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Preface

• This document and an implementation is maintained online at:

http://www.CeX3D.net/cexl/

Certain parts of this document is almost a verbatim copy from The Definition
of Standard ML (Revised) [SML97]. There is no need to rephrase well-written
text :-)

This ”we” and ”I” Thing

Whenever the text reads ”I” it refers to me, the author of this document. This
is usually where I have made a choice that you, as the reader, are not involved
in. The use of ”we” refers both to you as the reader and to me as the author,
which means that it refers to things we can both do. At these points it is thus
expected that you, the reader, follow me in the description.

So I am in fact neither speaking about myself in the plural nor being incon-
sistent about when to use ”we” and when to use ”I” :-)
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1 Introduction

The purpose of this document is to present a formal specification for a program-
ming language which I call CeXL (pronounced as ”Sex El”). I will also compare
the work with other relevant work and give motivation and examples of what
the language is useful for.

The design of the features of CeXL and early implementations have actually
been a big undertaking ranging over several years. During the design of CeXL,
several alternatives for features and semantics have been investigated. Many
caused problems and were rejected. Towards the end of the document I present
the results of these experiences. I also make a claim which justifies that given
the design constraints for the language, the most central part of the design can
most likely not be done any better. This claim also puts a lot of other relevant
research into perspective.

Prerequisities of the Reader

To understand the whole document the reader should have a firm understanding
of operational semantics for programming languages and compiler technology.
Courses such as Dat1E, Dat2V-Programming Languages and Advanced Compiler
Construction from DIKU, The Computer Science Department of the University
of Copenhagen, would be appropriate as minimum background knowledge. Even
though everything should be described here, the reader would definitely also
be better off by having understood The Definition of Standard ML from 1997
[SML97] and at least some of the articles mentioned about extensible records.

That being said, the document starts gently with some concrete examples of
use of the programming language and this should be accessible to anyone who
knows how to write Standard ML programs - although the examples are not a
thorough beginner’s guide. The thoroughness is in the rest of the specification.
The syntax and grammar for the CeXL language should also be accessible to
people who know how to read BNF -grammars and the likes. But for the most
important and essential parts of the specification, i.e. the semantics - solid
understanding of the relevant theory is essential.
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2 The Features of CeXL

A good starting point for the design of the language is taking Standard ML
’97 [SML97] and modifying it appropriately, since it is well-defined, well-known
and has many good properties. There are many of ML’s features that I want to
retain. This includes type inference. The features that the language is required
to have in addition to those found in Standard ML include polymorphic and
extensible records with optional fields and the ability to write programs which
react on whether a field is present or absent. I will also remove some features
from Standard ML to simplify an implementation and because the available
time for this project is limited.

The list below presents the features of CeXL - especially in comparison to
Standard ML ’97. The section following this one will demonstrate these features
and give further motivation for them. The features are named and I will refer
to them frequently later in the document.

• Limitations Compared to Standard ML ’97 :

– There are a few, one might say rather inessential, syntactical details
which are allowed in Standard ML that we don’t allow in CeXL. This
includes:

∗ We don’t allow arbitrarily many semicolons to separate declara-
tions

∗ We don’t allow notation such as let rec rec val x = ...

– We require patterns to be exhaustive in val bindings and the field-
case construct. This is mostly to simplify things but also to keep
programmers from writing non-exhaustive patterns in these places.
It means that the evaluation of a pattern-match in a declaration or
a fieldcase will never raise an exception.

– We have only a subset of all the Standard ML features. In particular
we do not support: abstype, withtype in datatypes, open, local in
end, infix operators and equality types. We also only support putting
the prefix op in front of infix operators in expressions. So op is not
allowed anywhere else.

– At each val binding when taking the closure in the semantics we
insist that completely parameterized type schemes result at each val
binding (except for type variables which are already scoped by an
enclosing val binding). This is subject to the value restriction.

This might give some extra limitations compared to Standard ML -
but hopefully it is rare in practice. This problem should usually be
fixable in CeXL programs by adding explicit type constraints.

– We do not support the full Standard ML ’97 module system. How-
ever, writing simple nested structures are supported to enhance the
name space of identifiers. Signatures and functors are not supported
at all.

• We don’t support explicit scoping of type variables at val bindings. How-
ever we support the notation: val (’a, ’b) f : ’a -> ’b which is the
notation for explicit scoping of type variables in Standard ML. In CeXL it

8



has another meaning though. It is used only for specifying that the type
variables ’a and ’b does not have any restrictions on them (the description
of what ”restrictions” are follow further down).

The scoping of type variables is always done implicitly in CeXL. It happens
at the val bindings in CeXL - but not necessarily at the same val binding
as where the type variables are explicitly written.

The notation of type variables at val bindings is thus supported but has
a slightly different meaning than in ML.

• Polymorphic Extensible Records : This is a central feature of the language.
It allows one to make operations on only some of the fields of a record while
the rest of the record is unknown. The semantics of this in CeXL aims to
give as few limitations as possible and yet keep the extensible record types
completely statically typed. We will give examples of this feature in the
following section. Section 4 about previous work will do a more in-depth
comparison with earlier research of this topic. The important claim in
section 7.1 is also relevant for this feature.

• Optional Record Fields with a Fieldcase Construct : This is another central
feature of the language which is tightly coupled with the feature Polymor-
phic Extensible Records. It allows us to make some of the fields of a record
optional. Again we try to give as few limitations as possible while keeping
everything completely statically typed in the semantics. There will be
examples of this in the following section and a thorough comparison with
earlier research in section 4 about previous work.

An important fact about how this is supported is that we are able to spec-
ify the type of an optional field and the optionalness of the field separately.
This allows several fields to have the same type but differing optionalness
or to have the same optionalness but differing types. This is important
and most other research proposals related to record cacluli cannot do this.
The claim in section 7.1 is also relevant here.

We have a fieldcase construct which allows us to ”case out” an optional
field and write 2 different pieces of code for when the field is absent or
present in a record respectively. This is the feature that allows us to really
make use of the optional fields. Examples follow in the next section.

• Restrictions on Type Parameters : We support restrictions on type pa-
rameters and have some new syntax for this. The restrictions for type pa-
rameters is specified by syntax like [’a : <restr>, ’b; ’c : <restr>]

where <restr> represents the syntax for restrictions. The syntax allows a
restriction to be either of the form ~{lab1, lab2, lab3} or of the form
tycon1 | tycon2 | tycon3. The first form of restriction specifies that
the type parameter may only be instantiated with records which do not
contain any of the labels lab1, lab2 or lab3. Anywhere from zero to a
finite number of labels may be specified. The second restriction specifies
that the type parameter may only be instantiated with either the type
tycon1 or the type tycon2 or the type tycon3. There may be anywhere
from 2 to a finite number of types (but they must be monotypes and dis-
joint). Each type may even have type arguments (but this would most
likely be rare in practice) so the restriction int list | real is valid.

9



This is an essential feature for the way we support Polymorphic Extensible
Records and Optional Record Fields. It is also what makes the fieldcase
construct work, where we use the restriction absent | present. The
fairly general notion of these restrictions even allows overloaded operations
to be well-typed in CeXL. For instance the operator + gets the value
description1:

val [’a : real | int | word] + : ’a * ’a -> ’a

Functions which use such operators also continue to be both well-typed
and to retain the overloading properties of the operators used. We will
see examples of this in the next section.

• Specifying Restrictions On Types: The introduction of the feature Restric-
tions on Type Parameters requires that the programmer state all restric-
tions on any type variables mentioned explicitly. In CeXL this is done
at val bindings or the derived fun bindings. Any types occuring within
a value binding and which mention a type variable get the restriction
on the type variable as specified at the val binding. So in the binding
fun [’a : ~{lab}] f (x : ’a) = x the ’a in the parameter for f gets
the restriction ~{lab}.

As mentioned, type variables are implicitly scoped at the val bindings.
However it may be that the scoping really occurs at some nested or some
enclosing val binding rather than where the variables are mentioned.

This scoping is a difference from Standard ML.

• Named Type Parameters : We have a slightly more general interpretation
of type parameter names. We use the names of the type parameters to
identify them rather than just the order of the parameters as done in
Standard ML. As an example, consider the following two types:

type (’a, ’b) t1 = ’a -> ’b

type (’b, ’a) t2 = ’a -> ’b

These two types behave differently in ML when instantiated but they
are equivalent in CeXL. This Named Type Parameters feature introduces
some new syntax for instantiating types. Instead of (int, real) t1 we
can also write [’a = int, ’b = real] t1 in CeXL.

This is only backwards compatible with Standard ML ’97 in some cases.
Most notably the cases where the names of type parameters are ’a, ’b, ’c
etc. - and in that order. More examples of this follow in the next section.

• Partial Type Instantiation: The type inference algorithm has been strength-
ened at a subtle point compared to that of Standard ML. When using
parameterized types in type expressions we allow some or all of the type
arguments to be omitted. From the declaration of the type the parameters
of the type and their restrictions are already known. So if the programmer
does not have any particular constraints on them it is no problem to omit
them. For instance we may write:

1The word value description is from the Standard ML Module System, found as part of
signatures in [SML97]
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fun f (l : list) = (l, l)

We do not have to specify that the type argument for list has to be any
particular type variable.

Naturally this requires slightly less program code to be written by the
programmer. More importantly it also benefits the encapsulation and
abstraction principles which should be followed for good software devel-
opment. We will see examples of this in the following section.

If we didn’t have the feature Named Type Parameters above we would be
forced to either include all arguments or omit all arguments - or figure out
some other ways of specifying restrictions only for some of the parameters
and not for others. We will also see examples of this in the following
section.

• Declaration of Restrictions : We allow declaration of identifiers to which
restrictions are bound. Just like the feature Partial Type Instantiation
this is to enhance encapsulation of parameterized types with restrictions
on the type parameters. We may declare a restriction with:

res opt = absent | present

where res is the keyword for restriction declaration. We may use the
declared restriction opt by writing e.g. [’a : res opt]. More examples
of this follow.

• Combinable Restrictions : It is possible to combine restrictions to make
new restrictions. The combined restrictions will have all the restrictions
of the restrictions that it was combined from. Restrictions are combined
with an infix +. So the restriction ~{lab1, lab2} + ~{lab1, lab3} is
equivalent to the restriction ~{lab1, lab2, lab3}. Using the opt from
before the restriction res opt + absent | present | int is equivalent
to absent | present.

This feature enhances encapsulation of parameterized types. More exam-
ples follow.

• Almost Complete Backwards Compatibility with a Subset of Standard ML
’97 : As mentioned the feature Named Type Parameters, is not always
backwards compatible with Standard ML ’97. The syntax of type variables
at val bindings also has a slightly different meaning than in ML. The
closure operations at val bindings are also slightly more restrictive in that
we quantize all free types as type variables at each point of closure - subject
to the value restriction.

However, everything else which is not new features is backwards compat-
ible with a subset Standard ML ’97. In particular all of the syntax is
backwards compatiple and it is the hope that most ML programs within
the subset of CeXL will not change their semantic meaning either when
considered CeXL programs.

11



2.1 Overall Design

For this language design it has been kept in mind that eventually we must be
able to write a compiler for the language which generates efficient programs.
This is why the language is kept completely statically and strongly typed.

The fact that the language is both statically and strongly typed also prevents
many programmer mistakes from happening at runtime. All errors involving
illegal types are reported at compile-time. This means that programs written in
CeXL which successfully pass the type-check cannot crash the computer running
the programs nor make runtime type errors, assuming that the implementation
is correct and that the programs are not given access to functions performing
illegal operations (such as writing a pixel value directly to the screen memory
where it turns out that the value is actually written outside the allowed screen
memory). The property that ”well-typed programs do not go wrong” is known
as soundness and has not been proved for CeXL.2 Soundness has been proved
for Standard ML though and I firmly believe that it holds for CeXL as well.

The following deserves mentioning about the type system of CeXL:

• Overloaded operators are typed as parametrized types with restrictions
similar to real | int | word. Such operators will have to know with
which type they are instantiated in order to work. This can be considered
a form of weak typing. However it is not of the kind which postpones
programmer mistakes until runtime.

• The fieldcase construct for optional fields relies on parametrized types
with the restriction absent | present. This is the only language con-
struct where the runtime excution depends on the instantiation of a type.
However, in this case there will always be a constructor in the dynamic
semantics to perform this check. Thus the dynamic semantics does not
need to know the instantiation type to work.

All of the above features where the runtime execution depends on a type can
usually be specialized away at compile-time as we will consider later in section
6. In particular they can always be specialized away for the intended use of
CeXL. So we can in fact generate very efficient programs for CeXL.

2This is intensionally left as an excercise for the reader ;-)
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3 Examples and Motivation for CeXL

CeXL is intended to be used as a general purpose programming language in a
3D computer graphics application. Therefore I will try to give some examples
of program code which it is very conceivable that one would write in CeXL for
this domain specific purpose. I will also give some examples which are only
for illustrating the strengths of CeXL in comparison to Standard ML. As we
will see, some of the primary issues that the language solves actually relate to
software maintenance and mutual backwards and forward compatibility between
2 independent pieces of code.

3.1 Example of Polymorphic Extensible Records

A 3D polygon is a common datastructure in a 3D computer graphics application.
It is a set of points in 3D space which forms the corners of a geometric figure
in a plane in 3D space. First, let’s define a 3D point in CeXL:

type point3d = {x : real, y : real, z : real}

A 3D polygon could in its simplest form just be a list of such points - i.e.
a value of type point3d list. However, this is usually far from enough in a
computer graphics application. The points of a polygon are usually called the
vertices of the polygon. Besides the 3D point, a vertex can contain such things
as color and a normal vector (for instance for representing a ”fake” orientation
of the polygon at that vertex to give a smooth look when visualizing adjacent
polygons). However there are a number of other data one could imagine - such
as texture coordinates for an arbitrary number of textures on the polygon (a
texture could be an image that the polygon is ”painted” with). In fact the ideal
would be not to put any restrictions on what data one can put in such a vertex!
In CeXL we can handle this by using polymorphic extensible records:

type [’a : ~{point}] vertex = {point : point3d, ... : ’a}

To describe what we have defined here we can say that ”a vertex is a record
containing the field point of type point3d and possibly other fields”. The
”possibly other fields” part is represented by the , ... : ’a part of the record
type. However this is not enough to define such a type in CeXL. We need to
explicitly say that the type variable ’a may only be instantiated with a record
which is not allowed to contain the field point. This is what the notation
[’a : ~{point}] means. The reason that ’a may not contain the field point

is that ’a is used in a record already containing the field point.
Let’s define a function which takes a record as parameter, removes the field

point from that record and returns the rest of the record without the field
point:

fun removePoint {point, ... = rest} =

rest

As in Standard ML we don’t need to put any explicit types to make this
work - this is handled by the type inference.

What happens here is that we do a record pattern-match where the notation
, ... = rest captures ”the rest of the fields” in the parameter record. This
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record is bound to the variable rest, where rest is just a normal identifier. We
then return the record rest from the function.

This function gets the value description:

val [’a : ~{point}] removePoint : {point : ’b, ... : ’a} -> ’a

As in the type we declared before, ’a must be a record which is not allowed
to contain the field point.

Now let’s try to define a function which updates the value of the point in a
vertex without touching any of the other fields in the record:

fun updatePoint newPoint {point, ... = more} =

{point = newPoint, ... = more}

Again we do a record pattern-match where the notation , ... = more cap-
tures ”the rest of the fields” in the record into the variable more. When forming
the new record in the result there is a similar notation for the record expressions
which ”puts the fields of the record more into the record in addition to the field
point”. It can also be read backwards as creating a record with the fields from
more and adding the extra field point - sort of like adding an element to a list
in ML.

The notation with the 3 dots is inherited from Standard ML. In ML one can
write:

fun getPoint {point, ...} =

point

This means ”ignore the rest of the fields of the record” in the pattern-match.
However, in ML this will require an explicit type constraint to say which fields
the record really has. We don’t need this type constraint in CeXL since the
function getPoint becomes well-typed as it is in CeXL.

3.2 Restrictions on Type Variables in CeXL

Above when defining the type vertex we used the notation [’a : ~{point}]

in the type parameter list. The part ~{point} is called a restriction on the
type variable ’a. It restricts ’a to be instantiated only with records - even only
those which do not contain the field point. In general in CeXL - whenever a
type variable is explicitly mentioned it must be given exactly the constraints it
has - if it has any. So writing a type variable without mentioning its constraints
means that it is intended that the variable not have any restrictions.

Consider the updatePoint function from before. If we wanted to explicitly
type the argument record of the function to be a vertex we could do it like this:

fun [’a : ~{point}] updatePoint newPoint ({point, ... = more} : ’a vertex) =

{point = newPoint, ... = more}

Notice that the constraints are listed after the keyword fun. They can also
be put after the keyword val for val bindings. This is similar to the notation for
scoping type variables in ML and in fact, ML’s notation is supported in CeXL
for type variables without restrictions. However the purpose in CeXL is only to
specify restrictions and no scoping necessarily occurs at these points in CeXL
since scoping of type variables is done implicitly.
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3.3 Partial Type Instantiation

In CeXL it is actually enough to write the function from before as:

fun updatePoint newPoint ({point, ... = more} : vertex) =

{point = newPoint, ... = more}

This is due to the feature Partial Type Instantiation of CeXL. This is actu-
ally a small enhancement of the type inference algorithm compared to that of
Standard ML. The declaration of vertex knows what type parameters the type
has and if there are no instantiations of those, then the type construtor argu-
ments can be omitted. The declaration of vertex also knows what restrictions
the type variables must have so there is no need to repeat those either.

This example shows that we can avoid repeating the restriction on the pa-
rameter for vertex, while still making the explicit type constraint vertex.

3.4 Partial Type Instantiation Enhances Encapsulation

In the example above we were able to specify the type of the parameter of a
function while having to specify neither which type parameters the type takes
nor which restrictions these have. This actually enhances the encapsulation of
the type vertex. If we were to specify all type parameters and their restrictions
every time we wish to place a type constraint we would also have to modify all
type constraints throughout the code every time we modify the type parameters
or the restrictions of the type vertex.

It is particularly in combination with polymorphic extensible records that
this is important that one does not have to repeat the constraints everywhere.
If for example our vertex type is extended to always include a color field
in addition to the point field, we would have to update the restriction on ’a

everywhere it is mentioned in the code, from being ~{point} as it were before,
to ~{point, color}.

3.5 Named Type Parameters

To have a look at the Named Type Parameters feature, let’s declare a parame-
terized type with several type parameters:

type [’a : ~{point, color}, ’b : absent | present]

colvertex = {point : point3d, ’b color : color, ... : ’a}

We don’t care how the type color is defined here. The ’b with the restriction
absent | present is actually an optional field. We will describe this later. This
type has 2 type parameters ’a and ’b. It can be instantiated for instance as:

({}, absent) colvertex

However we also support instantiation with this notation:

[’a = {}, ’b = absent] colvertex

This is because in CeXL it is not the order of the type parameter which
matters - as in ML. It is the names of the parameters. In the examples above the
first instantiation is actually equivalent to the second one because the notation
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({}, absent) colvertex means that the type parameters are assumed to have
the names ’a and ’b - and in that order. So this notation is dependent on both
the order of the given arguments and the names of the type parameters.

We could redeclare the type to:

type [’vertexData : ~{point, color}, ’hasColor : absent | present]

colvertex = {point : point3d, ’hasColor color : color, ... : ’vertexData}

This cannot be instantiated by ({}, absent) colvertex and we would
have to use the notation [’vertexData = {}, ’hasColor = absent] colvertex.
As can be seen, this is not compatible with ML! The worst example of this in-
compatibility would be to declare colvertex as this:

type [’b : ~{point, color}, ’a : absent | present]

colvertex = {point : point3d, ’b color : color, ... : ’a}

Now the instantiation ({}, absent) colvertex will be illegal because ’b

will be instantiated with absent and ’a will be instantiated with {}! However
using (absent, {}) colvertex would work as intended. What really happens
is that types like: (t1, t2, t3) t are transformed into: [’a = t1, ’b = t2, ’c = t3] t.
The order of the arguments thus represent the use of a predefined sequence of
type variables: ’a, ’b, ’c etc. This sequence is defined in the appendices, in
section 22.

To appreciate why this feature is added it can be mentioned that even a
fairly simple extensible 3D polygon mesh data structure (which is a very fun-
damental data structure in a 3D graphics application) in CeXL is likely to be
parameterized with 10-20 type variables. More elaborate data structures are
worse so it is not desirable to use parameter names ’a, ’b, ’c etc. nor to do
”unnamed” instantiation of such parameterized types.

3.6 Named Type Parameters Benefit Partial Type Instan-

tiation

Standard ML does not have the Named Type Parameters feature and uses the
order of type parameters to distinguish them. So consider this type declaration
in Standard ML and the function following:

type (’a, ’b) t = ’a list * int * ’b

fun f ((l, i, v) : (’a, real) t) = ()

The function explicitly types the function to take an argument of type
(’a, real) t. Notice that ’a is only mentioned once so there is no need
to state it’s name. In CeXL we can omit the first type argument here by using
the Named Type Parameters feature as follows:

fun f ((l, i, v) : [’b = real] t) = ()

If we were to support Partial Type Instantiation in Standard ML (i.e. with-
out the Named Type Parameters feature) we would be forced to either include
all type arguments or none of them - because consider:

fun f ((l, i, v) : real t) = ()
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In CeXL the type argument real will refer to the first type parameter of t
- which is called ’a. However what we needed was for the parameter ’b to be
instantated with real.

The conclusion is that the feature Named Type Parameters benefits Partial
Type Instantiation and that these 2 features go well together.

3.7 Declaration of Restrictions

In the examples until now we have specified restrictions directly where we need
them. However it is also possible to declare restrictions and bind them to
identifiers like this:

res rVertexData = ~{point}

Having declared this we can declare the type vertex from earlier as:

type [’vertexData : res rVertexData]

vertex = {point : point3d, ... : ’vertexData}

As shown in the description of the features for CeXL, the keyword res is
also for using a declared restriction. Declared restrictions also have their own
separate name space.

Declaring restrictions is a way of enhancing encapsulation. If at some point it
is necessary to specify that some type variable must have the same restriction as
the restriction for one of the type parameters for an encapsulated data structure,
then it is necessary to have this restriction of this data structure declared as a
variable. This makes it possible to extend the restrictions of the data structure
without having to alter all code using the data structure where it has specified
the restrictions explicitly.

3.8 Combinable Restrictions

It is possible to combine restrictions which is done using the operator + between
restrictions. An example where this benefits encapsulation of data structures
would be:

res rUncoloredVertexData = res rVertexData + ~{color}

fun [’vertexData : rUncoloredVertexData]

addColorToVertex color (vertex : [’vertexData = ’vertexData] vertex) =

{color = color, ... = vertex}

Here we extend the restriction rVertexData to include the restriction that
it may not contain the record field color. This code is valid whether or not
rVertexData already has this restriction.

3.9 Optional Fields And Fieldcase

To start the examples of optional fields in CeXL we will first consider this record
expression:

val r = {name = "John", age ?= present 28}
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The notation age ?= means that the field age is created as an optional field.
The expression present 28 creates the optional field as a present integer field.
The above example is actually equivalent to:

val r = {name = "John", age = 28}

Both of the above examples give the usual value description:

val r : {name : string, age : int}

We can also create the field age as being an absent field by:

val r = {name = "John", age ?= absent}

This will give the value description:

val r : {name : string}

Notice that the field age has disappeared. It should be noted at this point
that the present and absent variables are completely general. So writing:

val field = present 5

Will give the variable field a value of type (present, int) ?. So ? is a
type constructor for field types. Similarly writing:

val field = absent

Will give field a value of type (absent, ’a) ?. These field types just
happen to be displayed much more compactly inside record types but record
fields really always contain field values.

We can do pattern-matching of optional fields with a notation similar to the
notation from before:

fun printPersonName {name, age ?= age} =

print name

This function gets the more interesting value description:

val [’a : absent | present] printPersonName : {name : string, ’a age : int}

The record notation ’a age : int denotes that age is an optional field. The
type variable ’a must be instantiated with either the type present or the type
absent which is what the restriction [’a : absent | present] means. The
function can be called in one of these 2 ways:

val _ = printPersonName {name = "John"}

val _ = printPersonName {name = "John", age = 28}

This is a little interesting since we cannot do this in ML. We can make it
even more interesting by using the fieldcase construct to print the age if it is
present and not print it if it isn’t present. This is done in the following function:
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fun printPerson {name, age ?= age} =

fieldcase age in ’a of

absent =>

print name

| present years =>

print (String.concat [name, " is ", Int.toString years, " years old"])

type unit end

The notation fieldcase age in ’a of means that we case out the op-
tional field age where the type variable ’a is the variable to contain one of
the types absent or present depending on whether the field age is absent or
present. The two cases for absent and present years should be quite clear.
The type unit end tells us that the fieldcase construct must return unit.

A slightly more interesting function would be one which returns the record
and increments the age if it is present:

fun nextYear {name, age ?= age} =

fieldcase age in ’a of

absent =>

{name = name}

| present years =>

{name = name, age = years + 1}

type {name : string, ’a age : int} end

The interesting part is that the result type contains the type variable ’a.
This will have a different instantiation in each of the 2 clauses. It would be
hard for the type inference to infer such a type, which is why we always have
to include the result type of a fieldcase construct explicitly. This also implies
that we cannot omit any type arguments which must be ’a by using the feature
Partial Type Instantiation. As an example, the following will not work:

type ’a T = {name : string, ’a age : int}

fun nextYear {name, age ?= age} =

fieldcase age in ’a of

absent =>

{name = name}

| present years =>

{name = name, age = years + 1}

type T end

So all occurences of ’a of the result of the fieldcase must be mentioned
explicitly for the program to be valid.

3.10 Implementing Free Record Extension in CeXL

Record extension in CeXL is strict. That is, we may only add fields to a record
which are not already present in the record. To do free extension of records in
CeXL we can implement this explicitly. A polymorphic free extension operation
which adds the field f to any record can be implemented in CeXL as follows:

fun freeextf value {f ?= _, ... = r} =

{f = value, ... = r}
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It works by matching out the field f as being optional and creating a new
record with the rest of the fields r from the record and adding the field f to the
new record. It would get the value description:

val [’a : ~{f}, ’c : absent | present] freeextf :

’b -> {’c f : ’d, ... : ’a} -> {f : ’b, ... : ’a}

This shows that we have the power of free extension of records in CeXL. In
section 7.1 there is a claim justifying that given our design criteria for CeXL,
we have to represent record extension as strict extension at the type level. It
would be possible to add free extension as syntactic sugar for the language but
it has been decided to keep the supported syntax both at the value level and
the type level to strict extension of records.

3.11 Why Absent and Present are 2 Different Types

The types absent and present are 2 different types in CeXL. That is, if the
programmer was allowed to redeclare the types absent and present, they could
have been declared as:

datatype absent = absent

datatype present = present

However this is not quite the way they are declared. The constructors absent
and present are not visible in CeXL. Instead, two variables called absent and
present are visible. These are really a field value and a function respectively.
These variables have the following types:

val absent : (absent, ’a) ?

val present : ’a -> (present, ’a) ?

We saw how this was used in section 3.9 above. When they occur in the
patterns of the fieldcase construct as constructors, it is only because they are
treated specially here.

We need these 2 types to be two separate types to be able to make optional
fields statically typed. We will see an example of this in the next section. In the
mean time it should be realized that any concrete field value existing at runtime
must have one of the types (absent, ’a) ? or (present, ’a) ?. No concrete
value can exist with a type like (’a, ’b) ?.

3.12 Why Optional Fields and Extensible Records Should

be Strongly Statically Typed

Consider a long list or long array of vertices, say 1.000.000 vertices - which
is not unrealistic for a 3D graphics application. If it is statically guaranteed
that all vertices have the same type and binary layout at runtime it improves
performance considerably to traverse them and while doing an operation on all
vertices. As an example, consider this function:
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type [’a : ~{point, color}, ’b : absent | present]

vertex = {point : point3d, ’b color : color, ... : ’a}

fun [’a : ~{point, color}, ’b : absent | present]

makeVertexGreen {point, color ?= color, ... = rest} =

fieldcase color in ’a of

absent =>

{point = point, ... = rest}

| present _ =>

{point = point, color = greenColor, ... = rest}

type (’a, ’b) vertex end

We can now write this function:

fun makeManyVerticesGreen vertices =

map makeVertexGreen vertices

This function will get the value description:

val [’a : ~{point, color}, ’b : absent | present] makeManyVerticesGreen :

{point : point3d, ’b color : color, ... : ’a} list ->

{point : point3d, ’b color : color, ... : ’a} list

Whenever this function is called with a concrete list of vertices, the ’b must
be instantiated to a concete type. This ’b is always the same ’b for all elements
in the list. Since ’b can only be instantiated with either present or absent and
since these are 2 different types as described above, the field color will either
be present in all elements of the list or be absent in all elements of the list.
So in the function makeGreen, the same clause of the fieldcase is guaranteed be
executed for all elements in the list which is an obvious chance for optimizing the
fieldcase away in the inner function - e.g. by compiler optimizations like code-
hoisting [Appe98] or specialization [Jone93]. Even type instantiation would be
enough.

This also implies that we cannot write code like the following:

val zero = {x = 0.0, y = 0.0, z = 0.0}

val a = Array.tabulate (1000000, fn _ => {point = zero})

val _ = Array.update(a, 500000, {point = zero, color = greenColor})

This is seen in comparison to for instance using a more dynamic data struc-
ture of named values for each vertex - or even just a more dynamic type system.
The above examples is a very good reason to do the hard work of developing
the optional fields in the language to become completely statically typed.

Exactly the same arguments hold about the statically typed extensible records
that CeXL supports. We can give exactly the same guarantee as for the optional
fields that all records in the lists above will be the same for all list elements.

3.13 We Only Remove Absent Fields at Val Bindings

To make the feature Optional Fields work, we need to keep track of which fields
have been optional in a record during type inference even if they are instantiated
with absent because the field is not there. For instance we can write this code:
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fun f {optional ?= v, ... = r} =

{optional ?= v, ... = r}

If at some point, say in a function g, we call the function f and we want to
be sure that the field optional is not present we could write the following:

fun [’b : ~{optional}] g (r : {- optional : ’a, ... : ’b}) =

(print "g called"; f r)

The - in the record type here signifies that the field optional must be
absent.

If we pass an empty record through many functions which all support various
optional fields, the resulting record will end up having lots of absent fields
which are explicitly represented if we don’t do something about this. This could
potentially give hassle since record extension in CeXL is strict. Therefore, in
CeXL it has been decided that all absent fields are removed from the types of
non-function and non-reference values at each point of closure in the semantics
- which means at each val binding. This also avoids some weird behaviour in
the language. Consider these 2 functions:

fun [’a : ~{dummy}, ’b : absent | present]

unitId1 (a : {’b dummy : int, ... : ’a}) = a

fun unitId2 (a : unit) = a

The functions would get these value descriptions:

val [’a : ~{dummy}, ’b : absent | present]

unitId1 : {’b dummy : int, ... : ’a} -> {’b dummy : int, ... : ’a}

val unitId2 : unit -> unit

We will just note here that unit is equivalent to both () and {} as in ML.
We can call both of these functions with no fields:

val u1 = unitId1 ()

val u2 = unitId2 ()

If we didn’t remove all absent fields at each val binding the value descriptions
would have been:

val u1 : {- dummy : int}

val u2 : unit

The weird behaviour here is that u1 and u2 get different types depending on
how the function they are returned from is typed even though the implementa-
tion is the same and the given arguments are the same.

However in CeXL we do remove absent fields at the val bindings so the value
descriptions become:

val u1 : unit

val u2 : unit

So we don’t have any weird behaviour and it should give less hassle with
strict record extension.
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3.14 Use Case of Mutual Forward and Backwards Com-

patibility

In this section we will go through a complete use case where both optional
fields and extensible records are needed. An important goal for CeXL is to be
able to keep 2 pieces of code mutually forward and backwards compatible, even
though they are maintained separately. We will refer to such pieces of code as a
”plugin” and a ”scene”. A reader who is familiar with 3D graphics applications
might know why.

Plugins are usually written by one person - a ”plugin writer”. Preferably
the plugin writer should be a highly disciplined and skilled CeXL programmer.
Scenes are usually created independently by another person - a ”user”. Actually
such a user typically doesn’t write the code by hand. It is usually generated
automatically by a 3D graphics application - but it could also be partly hand-
written by expert users.

• Day 0: Some plugin writer writes a CeXL plugin called ”Plugin Version
1” containing the function definition:

fun fancyPlugin {data1, ... = more} =

{data1 = (* some code *),

result1 = (* some more code *),

... = more}

This function thus gets the value description:

val [’a : ~{data1, result1}] fancyPlugin :

{data1 : t1, ... : ’a} ->

{data1 : t1, result1 : rt1, ... : ’a}

• Day 1: User A gets ”Plugin Version 1” and creates a fancy scene with it.
User A saves this scene as ”Scene1”. ”Scene1” is thus a CeXL program3

and it contains the code:

val v1 = fancyPlugin {data1 = v0}

• Day 2: The plugin writer from before updates the plugin to ”Plugin Ver-
sion 2”, now with the code:

fun fancyPlugin {data1, data2 ?= data2, ... = more} =

{data1 = (* the old code *),

data2 ?= (* some new code producing an optional field based on data2 *),

result1 = (* some enhanced code using data2 if it is present *),

... = more}

The function gets this new value description:

val [’a : ~{data1, data2, result1}, ’b : absent | present] fancyPlugin :

{data1 : t1, ’b data2 : t2, ... : ’a} ->

{data1 : t1, ’b data2 : t2, result1 : rt1, ... : ’a}

3Actually it will be what is called an ICeXL program - but since we don’t define ICeXL
here, assume that it is a CeXL program
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• Day 3: User A upgrades to ”Plugin Version 2” and must still be able to
load ”Scene1”! This requires optional fields - in this case the field data2.

• Day 4: Now User A modifies ”Scene1” such that it now contains the code:

val v2 = fancyPlugin {data1 = v0, data2 = v1}

This scene is saved as ”Scene2”.

• Day 5: User A publishes ”Scene2” on the Internet and user B downloads
it. User B has only got ”Plugin Version 1” - but must still be able to load
”Scene2”! This requires polymorphic extensible records - in this case the
row type variable ’a.

Hopefully this gives an impression of why we need both optional fields and
extensible records for the domain specific purpose that CeXL is designed for. It
will be a future project to describe this domain specific behaviour in detail.
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3.15 Examples Comparing CeXL and ML

1. (* ML would assume this function to operate on int *)

fun line a b x =

a * x + b

(* CeXL value description: *)

val [’a : word | int | real] line : ’a -> ’a -> ’a -> ’a

2. (* ML would complain that all fields of the record have to be known *)

fun personToString {name, age, ...} =

name ^ ", " ^ (Int.toString age) ^ " years old"

(* CeXL value description: *)

val [’a : ~{name, age}] personToString :

{name : string, age : int, ... : ’a} -> string

(* We can call personToString with larger records *)

val s1 = personToString {name = "John Doe", age = 30, email = "john@doe.com"}

3. (* ML would complain that all fields of the record have to be known *)

val getX = #x

(* CeXL value description: *)

val [’a : ~{x}] getX : {x : ’b, ... : ’a} -> ’b

4. (* ML does not have extensible records *)

fun addName (name : string) r =

{name = name, ... = r}

(* CeXL value description: *)

val [’a : ~{name}] addName : string -> ’a -> {name : string, ... : ’a}

5. (* ML does not support removing fields from records *)

fun removeField {field, ... = r} =

r

(* CeXL value description: *)

val [’a : ~{field}] removeField : {field : ’b, ... : ’a} -> ’a

6. (* ML cannot do functional updates of record fields *)

fun updateField newValue {field, ... = r} =

{field = newValue, ... = r}

(* CeXL value description: *)

val [’a : ~{field}] updateField : ’b -> {field : ’b, ... : ’a} -> {field : ’b, ... : ’a}
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7. (* ML does not have optional record fields *)

fun transformVertex matrix {point, normal ?= normal, ... = more} =

{point = transformPoint matrix point,

normal ?= fieldcase normal in ’b of

absent => absent

| present n => present (transformNormal matrix n)

type (’b, Normal3D.t) ? end,

... = more}

(* CeXL value description: *)

val [’a : ~{point, normal}, ’b : absent | present] transformVertex :

Matrix4x4.t ->

{point : Point3D.t, ’b normal : Normal3D.t, ... : ’a} ->

{point : Point3D.t, ’b normal : Normal3D.t, ... : ’a}

(* It can be called with or without normal, with or without other fields.

The result has normal if and only if the argument has. *)

val v1 = transformVertex m {point = p1}

val v2 = transformVertex m {point = p2, normal = n2}

val v3 = transformVertex m {point = p3, color = c3}

val v4 = transformVertex m {point = p4, normal = n4, color = c4}

8. (* CeXL optional fields can have shared polymorphism -

unlike many other calculi for extensible records. *)

fun updateOptField newValue {field ?= value} =

fieldcase value in ’a of

absent => {field ?= value}

| present old => {field = newValue, updatedBy = "updateOptField"}

type {’a field : ’b, ’a updatedBy : string} end

(* CeXL value description (both ’a and ’b occur separately multiple times): *)

val [’a : absent | present] updateOptField :

’b -> {’a field : ’b} -> {’a field : ’b, ’a updatedBy : string}

3.16 More Examples In Section 25

More examples of CeXL code can be found in section 25 which contains a few
regression test programs for some of the more subtle issues of the semantics.
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4 Previous Work

In this section we will first go through earlier research work and afterwards
compare the semantics of CeXL with such work. In particular the focus will be
on record calculi since this is the main difference between CeXL and Standard
ML.

4.1 Record Calculi

[Card88] introduces structural subtyping and power types which is very similar
to the polymorphism in object oriented languages with inheritance. It typically
allows a larger record to be used as an argument for a function taking a smaller
record as argument; but see [Cast94] for the full story of covariance versus
contravariance.

[Ohor92] develops a calculus for polymorphic field selection of records as in
ML. An implementation calculus is also developed where field offsets in records
are statically computed. A translation between the calculi is made along with
proofs of soundness. Field offsets are calculated by polymorphic field abstrac-
tion. They also argue why type systems with subtyping can never get statically
computed field offsets: Because records are not ”exactly typed”.

[Wand88] reviews the basic operations on records and defines a syntactic
protocol for objects with multiple inheritance by using record operations and
λ-calculus. Type inference for records with extension and concatenation is pre-
sented, but concatenation requires some tricky semantics involving constraint
equations. Infinite label sets are represented with finite semantic objects, but
it seems there is a restriction that extension variables for records must have
exactly the same set of explicit labels (i.e. the labels which are forbidden in the
extension) as the record they extend.

[Wand87] defines a record calculus with extensible records and variants. It
includes a complete type inference algorithm (unfortunately it had an error
in the original paper; it was subsequently fixed by the same author). Detailed
proofs and reduction from the semantics to unification is given. It is also argued
how records and variants can be used to represent simple objects with structural
inheritance.

[Remy89] defines a semantics for primitive record and variant operations
upon which other record and variant operations can be defined as macro-syntax
as desired. Record fields consist of both a type and flag denoting presence or
absence of the field. It has type inference, is sound and complete, uses the basic
unification algorithm and can handle recursive types as well. The semantics
assumes a finite set of labels though and would have to be slightly rewritten to
use an infinite set of labels.

[Remy92a] covers how to encode record concatenation with record extension
and this result is applied to a natural extension of ML. Concatenation requires
records to be abstracted into functions though, which (as mentioned in the pa-
per) requires investigation before it can be considered free at runtime. Both
symmetric and asymmetric concatenation is explored and free and strict exten-
sion and field removal. The work is compared to other calculi and encoding
multiple inheritance using records with concatenation is explained.

Projective ML [Remy92b] defines record extension and polymorphic records
by introducing general elevation and projection constructs. This gives a fairly
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simple semantics preserving many of the properties of λ-Calculus such as subject
reduction and the Church-Rosser property. They introduce records with default
values. They also support an operation taking all fields from one record except
for one field which is taken from another record - whether that field is present or
not. However there seems to be a problem with nested records in this semantics.

4.2 How ξ-Calculus Relates to Other Work

The base calculus of CeXL is called ξ-Calculus and we will briefly go through
how this relates to other languages and calculi.

4.2.1 Extensible Records and Field Absence and Presence

[Remy89] is probably the calculus which resembles ξ-Calculus most in terms of
what it can do with records and how this works. However, to represent infinite
sets of labels with finite semantic objects it actually turns out that ξ-Calculus
implements extensible records much as the semantics in [Wand88]. It handles
record extension and treatment of infinite sets of labels in much the same way.
ξ-Calculus does not require the equivalent of ”extension variables” (to use the
terminology of that paper) to have the same set of explicit labels as the record
they extend though. As an example, [Wand88] would not be adequate to type
the following (using CeXL syntax):

fun f {a, ... = r} =

{a = a, b = "Hello", ... = r}

To handle this, we keep track of which labels are forbidden for the extension
variables - somewhat in the style of [Remy92a] except that it only works in
[Remy92a] because records are really abstracted as functions. If the encoding
of [Remy92a] is used without function abstractions, it would not be adequate
to type the above example either.

ξ-Calculus records are not always polymorphically extensible. Only when
the programmer explicitly types them as such or uses them as such are they
polymorphic and do they incur the potential overhead of extension polymor-
phism. So where needed by the programmer, we can type our records exactly
which is advantageous according to [Ohor92]. This is in contrast to subtyping
[Card88], where one can typically always pass a larger record to e.g. a func-
tion taking a record as argument. The ξ-Calculus record polymorphism also
differs from subtyping in that we don’t merely ignore additional fields - we can
actually capture them in function parameters and we are able to pass them on
separately.

ξ-Calculus does not support concatenation of records, since it seems to ei-
ther add complexity to the language as in [Wand88] or to require that records
are treated as function abstractions as in [Remy92a]. Record concatenation is
considered more thoroughly in section 7.5.

The semantics for extensible records in ξ-Calculus is not given in terms of
primitive record operations as in most other research. Instead it is incorporated
in record pattern-matching and record expressions, since we need the semantics
of a complete language which incorporates these features.

To be able to write programs which depend on the presence or absence of
record fields, we have a fieldcase construct. This in turn is constructed using
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parametrized types with restrictions. This is possibly related to Oligotypes
[Heng87], refinement types [Free91] and intersection types [Bare83], [Pier91]
but I have not looked into any of this. The parametrized types with restrictions
also come in handy when we are defining the semantics for extensible records,
most importantly to prevent an extension variable of a record to be instantiated
with records containing forbidden fields. It also ensures that extension variables
are instantiated with records in the first place, and not any other types. We
would not be able to use a record calculus such as [Wand87] since it does not
explicitly represent fields as present or absent and thus cannot explicitly assign
types to optional fields.

Record extension in CeXL is strict whereas [Wand88] and [Remy89] uses
free extension. We get the power of free extension though since we can case out
optional fields and build a new record where we can be sure to either exclude
or include an optional field as we desire.

Finally it should be noted, that we can explicitly specify optional fields with
a specific type in ξ-Calculus - such as an optional field of type ’a list. The
semantics in [Remy89] can do this too, whereas the semantics in [Wand87],
[Wand88], [Remy92a], [Remy92b] and [Ohor92] cannot do this and neither do
they seem to mention this as a flaw anywhere. Subtyping cannot do this either.

4.2.2 The Rest of ξ-Calculus

The rest of ξ-Calculus is more or less like the core of the semantics of Standard
ML ’97 [SML97]. However we do not handle declaration of types or datatypes
in ξ-Calculus. As we shall see, this is handled elsewhere in the language, but it
is still basicly done as in Standard ML.
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5 Walk-through of the CeXL Definition

This section is an easy walk-though of the Definition of CeXL. The actual defi-
nition with all the technical details is given in the appendices.

5.1 The Languages and Calculi Presented

The final language we wish to present is called CeXL. This in turn is reduced
purely syntactically to Naked CeXL, which is the essential part of the language.
Naked CeXL is implemented on top of a more fundamental calculus called ξ-
Calculus. The languages will be presented in a bottom-up fashion, by starting
with all the hard work on ξ-Calculus.

All the semantics for ξ-Calculus is presented first. Then we present Naked
CeXL and a translation from Naked CeXL to ξ-Calculus. Finally, the real syntax
of CeXL is presented along with how to reduce this into Naked CeXL. Every-
thing is put together at the end, by a description of the initial environments for
the semantics and for the translation into ξ-Calculus, and a description of how
to apply everything to type-check and execute a CeXL program.

5.2 About the Separate ξ-Calculus

A goal of the calculus is to be able to translate Naked CeXL into ξ-Calculus and
afterwards do type inference directly in ξ-Calculus. So there is no type inference
on the source programs - not even on the reduced Naked CeXL programs. This
turns the calculus into a kind of base programming language for implementing
Naked CeXL and thus also CeXL.

One feature of Naked CeXL that we cannot represent in ξ-Calculus, is the
datatype definitions and the exception declarations. The types and construc-
tors generated from such declarations are inserted directly into the ξ-Calculus
code without separate declarations. However, we have to insert declaration of
exception constructors to ensure correct scoping of type variables and correct
static semantics of exception declarations.

There are clearly disadvantages of defining ξ-Calculus separately. It compli-
cates the whole semantics of the language specification, because the semantic
behaviour of the language is spread out into both ξ-Calculus and Naked CeXL.
This would definitely complicate proving properties about the language and rea-
soning about the semantics. It also makes the task of writing the specification
bigger.

There are also advantages though. One can consider the runtime behaviour
and the essential type system by looking only at ξ-Calculus. This is not the
main motivation though. The main motivation is to make it easier to imple-
ment the language more directly from the specification, in a way that keeps
the implementation more manageable and tractable. One fact is that it min-
imizes both the type inference implementation and the implementation of an
interpreter - at least for a simple interpreter which is as close to the semantics
as possible. For a more decent implementation such as a compiler, it also saves
one from having to think of more than ξ-Calculus after type inference is done.

An exception to this though is, if one wishes to make the implementation
interoperate with other languages or through dynimcally loaded libraries. Here
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one would have to worry about Naked CeXL to support language constructs
like datatype declarations.

It is the hope that the use of a separate ξ-Calculus and the quite straight-
forward semantics that it has been given, will lower the abstraction level required
to read this language specification. There are hopefully not as many subtle and
quite hidden features in this specification, as is the case with the Definition of
Standard ML ’97 [SML97].

5.3 Presenting Implicitly Typed ξ-Calculus

On the following page, we will see the type system, the semantic objects and
a syntax for the expression language of ξ-Calculus in all it’s glory from the
specification. This is the most essential part of the specification and it fits on
a single page, which makes a very solid point of reference for how ξ-Calculs
looks. You will probably have to read the semantics of the specification to fully
understand everything, but the 2 pages following have some comments with
important facts about the type system.
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5.4 Implicitly Typed ξ-Calculus

The following is the type system and the expression language of ξ-Calculus.
This is the most important page of the specification. The comments on the next
2 pages give a slight idea of its meaning.

5.5 Syntax and Semantic Objects for the Type System

Syntax Name Semantic Objects

lab Lab = ”Record labels”
x VId = ”Variable identifiers”
α TyVar = ”Type variables”
β MetaVar = ”Meta variables”
a PName = ”Type parameter names” for constructor types
d TyName = ”Type names”
c CName = ”Constructor names”

ω ::= {lab1, . . . , labn} ExclLabs = Fin(Lab)

ψ ::= [a1 = ψ1, . . . , an = ψn]d{c1, . . . ,ck} TyPat ∪p≥0 (PName × TyPat)p × TyName × Fin(CName)

ψ/m ::= ψ1 / · · · / ψm TyPats = ∪p≥1 TyPatp

ξ ::= ◦ | ω | ψ/m Restrict = ∅ ∪ ExclLabs ∪ TyPats

γ ::= α :: ξ | β :: ξ Vars = TyVar × Restrict ∪ MetaVar × Restrict

ρ ::= {lab1 : τ1, . . . , labm : τm; τ} | {} Row = (Lab fin
→

Type) × Type ∪ ∅

φ ::= τ ? τ ′ Field = Type × Type

κ ::= [a1 = τ1, . . . , an = τn]d{c1, . . . ,ck} ConsType = ∪p≥0 (PName × Type)p × TyName × Fin(CName)

τ → τ ′ Fun = Type × Type

τ ::= γ | τ → τ ′ | ρ | φ | κ Type = Vars ∪ Fun ∪ Row ∪ Field ∪ ConsType

σ ::= ∀[α1 :: ξ1, . . . , αn :: ξn].τ TyScheme = ∪p≥0 (TyVar × Restrict)p × Type

r ::= {lab1 : τ1, . . . , labn : τn} OrderRow = Lab fin
→

Type

5.6 A Syntax for ξ-Calculus Expressions

(expression) e ::= λx.e | e1 e2 | x | e : τ | c : σ | c ex τ | scon |
{ } | {lab1 = e1, . . . , labm = em, e} | e1 ? e2 |
let p1 = e1 ; · · · ; pn = en in e |
letrec p1 = e1 ; · · · ; pm = em in e |
letex c1 : τ1, . . . , cm : τm in e |
e handle p1 ⇉ e1 ‖ · · · ‖ pm ⇉ em | raise e
case e of p1 ⇉ e1 ‖ · · · ‖ pm ⇉ em |
fieldcase e in α of absent ⇉ e1 ‖ present p ⇉ e2 type τ |

(pattern) p ::= x | p : τ | x as p | c : σ | c(p) : σ | c ex | c(p) ex τ | scon | |
{ } | {lab1 = p1, . . . , labm = pm, p} | p1 ? p2
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5.7 Comments on the Type System

The following gives a brief idea of the type system of ξ-Calculus:

• The ξ represents restrictions on the allowed instantiations of type variables
and meta variables.

• The restriction ◦ means ”no restrictions” - so α :: ◦ is like a ”normal” type
variable in Standard ML.

• The restriction ω represents a record excluding the labels ω.

• The restriction ψ/m is a list of allowed (mutually disjoint) constructor
types. Each such type in the list is a ψ.

• The empty record {} in ρ really represents: ”All as-of-yet undefined fields
are absent”. This is actually what is seen as the type unit in CeXL. All
concrete record values in CeXL consist of some or no extensible records
extending one another and finally being extended by {} at the end. Each
such extensible record is written as {lab1 : τ1, . . . , labm : τm; τ}. It is only
in functions, type declarations and the likes that it makes sense to have
extensible record types which are not ending with {}, in which case they
would end with a meta variable or a type variable.

• β :: ω may not be instantiated with a record without fields with new
β′ :: ω′, i.e.: β :: ω 7→ {;β′ :: ω′}. Instead it should be instantiated
with β :: ω 7→ β′ :: ω′. If we did not forbid this we would have problems
unifying the types β :: ω and {;β :: ω} with each other. We ensure this in
the inference rules of record expressions and record patterns for ξ-Calculus.
The reason why β :: ω and {;β :: ω} would have to unify with each other
is that they both denote an extensible record excluding the fields ω - i.e.
they denote exactly the same thing.

• Consider the ai used in the ai = τi in the constructor parameters in Con-
sType and the ai = ψi in the parameters for the type pattern constructor
in TyPat. These ai are to be considered parameter names for construc-
tor types. They will correspond to the type variable names of the closed
type scheme of constructors. However they may not be considered type
variables - which is why they are denoted ai and not αi. They are for
allowing type parameters to be identified based on names rather than the
order in which they appear. This is for giving CeXL the feature Named
Type Parameters.

• The ConsType contains a finite set of constructor names (the Fin(CName)).
These are the names of the constructors that the ConsType has declared.
This is only used by an implementation to ensure correct implementation
of pattern-matches and the checks that pattern-matches are exhaustive
where this is required. This also means that they are not used at runtime,
so an implementation can remove them after type inference.

An example of a constructor type in CeXL is the type bool which would
be represented by: []bool{true, false}. The type int is represented by:
[]int{· · · } to signify that it has many constructors (i.e. all the supported
integer constants). The type int list becomes: [a = []int{· · · }]list{nil, ::}.
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• ConsType is also used for exceptions. Here only one predeclared construc-
tor is used: []exn{}. It is treated specially, since it gets its constructors
added separately through exception declarations. Therefore we use an
empty list of constructor names for it. The constructor []exn{} may only
be used with the ex constructs and in type specifications in ξ-Calculus.
Restrictions on the number k of constructor names allowed where Con-
sType occurs in will ensure this. When k ≥ 1 it cannot be []exn{}.

• The class Field of the form τ ? τ ′ denotes the type of a record field. τ
may only be the type []present{present}, the type []absent{absent} or a
meta variable or type variable properly restricted to such instantiations.
τ ′ is the type of the value in the record field.

• σ is used in the value environment and for representing the closed types
of constructors. Constructors will have σ of one of the following 2 forms:
∀[α1 :: ξ1, . . . , αn :: ξn].[a1 = α1 :: ξ1, . . . , an = αn :: ξn]d{c1, . . . , ck} or
∀[α1 :: ξ1, . . . , αn :: ξn].τ

′ → [a1 = α1 :: ξ1, . . . , an = αn :: ξn]d{c1, . . . , ck}.

As we shall see later these type schemes must generalize some type τ ,
which is written σ ≻ τ .

During type inference the names ai must be chosen so that they are the
same as the αi to avoid confusing the programmer and to avoid problems
in identifying parameters in type patterns.

• r is only used during unification, where we will need to store a finite set of
labels mapped to types. This is for transforming a record into a semantic
representation where records are not treated as a recursive list of smaller
records extending each other - as they usually are when represented by ρ.
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5.8 Static Semantics of ξ-Calculus - Unification

Section 14 gives explicit inference rules for the unification between 2 given types.
We need this to be able to implement a unification algorithm for the semantics
of ξ-Calculus. The unification relation between 2 given types can be briefly
stated as follows:

It is the standard unification relation with the following changes:

• All polymorphic variables and meta variables have restrictions on them
which limit what they may be instantiated with. These restrictions are
maintained by the unification

• Equality of records during unification is modulo reordering of fields. This
is achieved by converting any records encountered to a semantic represen-
tation (denoted r in the syntax for the type system) which is independent
of the order of the fields of the record. Unification of records is done using
this representation because record types in ξ-Calculus may be composed
of several smaller record types extending each other as a sequential list
of records. For example, if we did not do this we would have problems
unifying {lab1 : τ1; {lab2 : τ2; τ}} and {lab2 : τ2; {lab1 : τ1; τ}} with each
other. Such two record types must unify, since they both denote the type
of an extensible record with two fields, lab1 and lab2 of types τ1 and τ2
respectively, where both record types are extended with τ . So the two
types denote exactly the same record.

• The unification relation deals with maintaining the property that exten-
sible record types may never redefine the same field twice.

• Record fields must have field types of the form τ ? τ ′ where τ is either
[]absent{absent} or []present{present} or a type variable or meta variable
which is properly restricted to these instantiations

• Non-extensible records are represented modulo equality of {} at the end of
the record with records of absent fields and new {} types - e.g. equalities
like:
{} = {lab : []absent{absent} ? τ ; {}}

Ordered records r and meta variables β from our semantic objects are only
used for the unification when implementing the semantics. r is for transforming
a record into the semantic representation mentioned above and β are the place
holders for unknown types during unification. One exception though is that
we explicitly have to handle meta variables in the rules for explicit type spec-
ifications in ξ-Calculus. This is necessary to support the feature Partial Type
Instantiation.
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5.8.1 Formal View and Implementation of Meta Variables with Re-
strictions

Restrictions on meta variables must always be defined at the time the meta
variable is created - and they may never change. To restrict an existing meta
variable further, it has to be bound to a new meta variable with a tighter but
compatiple restriction. A meta variable may also only be bound to another
type or meta variable once, and never be rebound. Whenever a meta variable
is bound to a type (or a type variable or a meta variable), it must be checked
that the type respects the restriction of the meta variable. We can only write a
correct unification relation if we follow those guidelines.

When dealing with meta variables with restrictions, we adopt the following
view:

• Meta variables will have restrictions at creation time which may never
change. Meta variables with restrictions are denoted β :: ξ, where β is the
variable and ξ its restriction.

• We will assume that we have an environment env which binds meta vari-
ables to types.

When implementing the unification relation there are 2 simple ways of rep-
resenting meta variables with restrictions:

• We can emulate having just 1 environment, by keeping an updatable ref-
erence cell with each meta variable. The reference is either a restriction
or a bound type. Restrictions may be updated to bind a compatiple type,
which in turn may just be another meta variable with a tighter but com-
patiple restriction. However types may not be updated once they have
been bound the first time.

• It could also be that one prefers to have a data structure where restric-
tions and bound types are stored separately, which can be done by always
keeping the restriction (which may never change) with each meta variable
and an updatable reference cell containing an optional bound type.

5.8.2 Unification of Restrictions

In all the inference rules presented where two restrictions have to be unified, it
is always enough to check that they are simply equal. So we never do a general
unification on restrictions. In section 7.2 we will consider some of the problems
which arise if we were doing unification of restrictions.

All the special issues of restrictions should be handled appropriately by the
inference rules of the unification relation which will be presented.
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5.9 Static Semantics of ξ-Calculus

All the static semantics of ξ-Calculus with inference rules is presented in sections
15 and 16, and they assume that the unification relation between two types from
section 14 is used.

Some of the most important facts about this semantics are the following:

• Scoping of type variables is implicit. Complete inference rules for deter-
mining this scoping are given. The scoping occur at the let and letrec
constructs. The sections 15.4 and 15.5 in the appendix give a detailed de-
scription of how the scoping occurs. Section 16.3 gives even more detail.

If it ever becomes desirable to add the explicit scoping of type variables
found in Standard ML, this would amount to storing these explicit type
variables in ξ-Calculus during translation from Naked CeXL, some changes
to the inference rules for the implicit scoping, and a slight change in the
closure operation.

• We do some tidying up of types when doing the closure operation at let
and letrec bindings (which correspond to val bindings in CeXL according
to the translation into ξ-Calculus). In particular we remove all absent
fields from record types in the types of non-function and non-reference
values, to avoid the weird behaviour described in section 3.13. Doing
this for function values or reference values may be unsound and has been
suppressed in the language specification from version 0.9.3.

• The closure operation of a type for quantifying types as type schemes
is done at let and letrec bindings, which is similar to what is done in
Standard ML [SML97]. The type variables which are implicitly scoped at
an enclosing let or letrec binding is excluded from this quantification, as is
also the case in Standard ML. One slight difference from Standard ML is
that we require principal typings at top-level and in structures at each let
and letrec binding in xi-Calculus (i.e. each val binding in CeXL) and we
do not allow taking the next or previous let or letrec into consideration.
As an example, the following is legal both in CeXL and in Standard ML:

val _ = let

val x = ref nil

val _ = x := [5]

in x end

On the contratry, the following is prohibited in CeXL but a Standard ML
implementation may choose to accept it:

val x = ref nil

val _ = x := [5]

In CeXL, we would have to explicitly type the ref nilwith int list ref,
but one may have to do the same for some Standard ML implementations.

The sections 15.3, 15.4 and 15.5 in the appendix give a detailed description
of the value-restriction and the closure operation in CeXL. The inference
rules (57) and (58) and the comments for these are also essential. It is
recommended to read this to understand the issues involved.
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• The inference rules are actually quite similar to what is done in Stan-
dard ML. However it has been avoided to make the semantics recursive
at letrec bindings. This is a simplification compared to ML. We also
have less restrictions on how type names may escape local scopes and
pattern-matches, which also simplifies things. This is possible because in
the translation from Naked CeXL to ξ-Calculus, we generate constructor
names and type names for datatypes which are unique across the entire
program.

• There are no special inference rules to deal with extensible records, the
fieldcase construct and restrictions on type variables. Most of the com-
plexity of extensible records and type variables with restrictions is handled
in the unification relation of section 14.

• We have to deal with meta variables in the inference for explicit type
constraints in ξ-Calculus. This is actually part of how a unification al-
gorithm for ξ-Calculus is implemented, and it can be considered quite a
”hack” in the semantics. It is necessary to support the feature Partial
Type Instantiation. An alternative would be to move the semantics of
declared types into ξ-Calculus, but that would take away the simplicity
of ξ-Calculus. Declaration and instantiation of types is handled already
during the translation from Naked CeXL to ξ-Calculus.

A more clean way to handle explicit type constraints, might be to handle
the well-formedness of these during the Naked CeXL to ξ-Calculus trans-
lation. We already handle the semantics of type function applications and
declarations at that point, so it would in fact be a natural place.

• In the type specification for the result type of the fieldcase construct, all
occurrences of the type variable which is ”cased upon” in the fieldcase
must be explicitly mentioned. So these cannot be left out by the CeXL
programmer using the CeXL feature Partial Type Instantiation. This is
due to the way that the rule for the fieldcase works in the static semantics.
It is potentially a hard problem to change the semantics to releave the
programmer from this burden, but fortunately it is a small burden.
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5.10 Dynamic Semantics of ξ-Calculus

The dynamic semantics of ξ-Calculus is presented in section 17. It is quite
similar to that of Standard ML and is quite straight-forward. Since CeXL is re-
duced entirely to ξ-Calculus, this actually gives the complete runtime behaviour
of CeXL programs. We shall not go through this semantics any further.

5.11 Grammar of Naked CeXL

The grammar for Naked CeXL is given in section 18. It is a BNF grammar,
which is quite similar to that of the bare language in the Definition of Standard
ML [SML97]. The following comments apply to the syntax. This mostly relates
to where the syntax differs from Standard ML:

• The notation {a, b, ... = c} for records is trying to be backwards
compatiple with Standard ML ’97 [SML97]. [Remy89] uses the notation
{a, b, c...} and the small difference is mostly to try to prevent pro-
grammers from making typographic mistakes. I claim that {a, b, c...}

is too close to {a, b, c,...} which means something else in pattern-
matches. The use of the extra = is an attempt to make the notation more
consistent with the notation for matching record fields into variables and
the notation for putting values into record fields in record expressions.

• The grammar for optional fields tries to be as minimal as possible, by not
showing anything in front of ordinary present fields and showing only a -

in front of absent fields.

• The restriction of records with forbidden fields are represented by ”negated”
curly braces ~{lab1, lab2}. This is to symbolize a negation of the record
braces. The negated braces are used to keep the possibility open for al-
lowing restrictions to include records in the future if necessary.

I have considered using }lab1, lab2{ but this soon becomes very dis-
turbing to read - especially when it is in the vicinity of the normal record
notation. Using {{lab1, lab2}} gives conflicts in the lexical analysis
when making }} a reserved symbol, so neither is this good enough. Con-
sider the following expression to realize what the conflict is:
{loc = {pos = 5, line = 2}}.

• The fieldcase construct looks something like
fieldcase v in ’a of absent => e1 | present p => e2 type t end

which can be read as ”we case v in the variable ’a of the cases ... all having
the type t”. The use of in, of, type and end tries not to introduce new
keywords unnecessarily. The words absent and present in the fieldmatch
rule are not keywords, but rather identifiers for the predeclared variables,
which have to be handled specially in the fieldcase construct.

• The syntax of type declarations and datatype declarations introduce a dif-
ferent syntax for the type parameters. We have to introduce some kind of
new syntax to accommodate the specification of restrictions. I have taken
this opportunity to interpret the type parameters sort of like a ”record”
where the type variable names matter, rather than as a ”tuple” as in
Standard ML where only the order of the parameters matters. The usual
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”tuple” notation for type variables found in Standard ML, is added as syn-
tactic sugar in the full CeXL grammar. The grammar [’a : int | real]

is inspired by what is mentioned in [ML2000]. One reason to use [ and
] around the parameters rather than for instance { and } is to avoid
confusion with the curly braces used in record types and restrictions.

I conjecture that the ”record” notation for type parameters can make
programs more tractable when using many type parameters on a type
- and given that optional fields and extensible records require type pa-
rameters, this will definitely come in handy. Furthermore, some of the
domain specific programs that CeXL is designed for really do use many
type variables.

We also use this notation for placing restrictions on type variables in front
of val bindings or fun bindings. However, as was already argued for the
semantics, we do not really quantify with these variables as in Standard
ML ’97. Semantically we scope type variables at these points - but some
variables may be scoped further in or further out in the semantics of ξ-
Calculus.
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5.12 The Naked CeXL to ξ-Calculus Translation

In section 19, the rules for translating from Naked CeXL to ξ-Calculus are given.
This translation works by operating on Naked CeXL syntax and translating this
into ξ-Calculus syntax. The translation is presented as translation functions
taking Naked CeXL syntax, and usually some environment, as argument and
producing ξ-Calculus code from this. There are also translation functions which
only manipulate environments.

This translation is mostly syntactic. However some semantics is also used.
In particular, declarations of restrictions, types and datatypes must be checked
according to the static semantics of ξ-Calculus. A closure operation is also
done on datatypes, to quantify them properly and allow them to be recursive.
During the translation, no types or datatypes are declared in the resulting ξ-
Calculus code. However, exceptions are declared, to ensure correct scoping
of type variables. This also ensures that the types of declared exceptions are
checked according to the ξ-Calculus static semantics.

All declared types (datatypes do not count here) only exist in this transla-
tion. They are instantiated immediately during the translation. This is done by
application of type functions in a way which supports Partial Type Instantiation.
The details of this are described in section 19.3.

It is also during this translation, that unique constructor names and unique
names for datatypes are generated. The simple structures which make up a sim-
plified version of the module system found in Standard ML, are also eliminated
during the translation. This is done by appropriate prefixing of identifiers. A set
of translation functions prefix the identifiers declared at top-level in a structure
appropriately.

All of this translation is quite tedious and looks daunting. It should however
be quite straight-forward to implement.

5.13 The Full Syntax for CeXL

The complete lexical syntax and grammar for CeXL is presented in the sections
20 and 21. The syntax and the way it is presented is quite similar to that of
Standard ML, except for what is already described for Naked CeXL, so there is
not much to say about it.

5.14 CeXL To Naked CeXL Translation

Section 22 presents the rules for transforming CeXL into Naked CeXL. So this
part works sort of like a strip-show :-) It is quite similar to how the full gram-
mar for Standard ML is reduced to the bare ML language in the Defintion of
Standard ML, so there is no reason to describe it further.

5.15 Putting It All Together

The sections 23 and 24 complete the language specification, by putting all the
big parts together. All initial environments used for the semantics and the
translation from Naked CeXL to ξ-Calculus are presented in section 23 . In
section 24, it is described how a CeXL program is translated into ξ-Calculus
and type-checked in the appropriate environments, and how it is subsequently
executed. This completes the walk-through of the Definition of CeXL.
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6 Notes on Implementation

In this section there will be a few hints on compiler implementation. In par-
ticular, it will be justified that CeXL programs can be compiled into efficient
code when doing whole-program compilation - without even requiring very fancy
compiler technology. We will also go through the implementation supplied for
this language specification.

6.1 Removing ”Weak Typing”

Overloaded operators are typed as parametrized types with restrictions, similar
to real | int | word. As mentioned in section 2.1, this could be considered
a kind of weak typing. It is possible to specialize this away at compile time -
except if the types are to be exported through a foreign function interface or
other kinds of binary program interfaces. For the domain specific purpose that
CeXL is designed for it is actually intended that all source code be available,
to allow global program optimizations. This allows us to do whole-program
compilation. In this case, we can always specialize the above types away.

6.2 Instantiating All Polymorphism During Compilation

If we wish to do whole-program compilation of ξ-Calculus, it might be desirable
to instantiate all polymorphic types during compilation (i.e. to monomorphorize
programs).

The fieldcase and all other constructs introduced in CeXL will not give any
problems or any huge blowup in the size of the generated code when instantiating
all polymorphism (except maybe in very unrealistic programs). In fact, this can
eliminate fieldcase entirely during compilation, as well as the need to represent
the absent and present constructors at runtime at all. This can also eliminate
record polymorphism, thus reducing the extensible polymorphic records to ex-
tensible monomorphic records, which again can be reduced to ordinary static
records as found in ML (by e.g. inserting appropriate record pattern-matches
and record expressions).

This is an easy way of demonstrating that at least for whole-program com-
pilation, the extensible records of CeXL can be implemented without giving any
significant runtime overhead (extending monomorphic records might give some
copying occasionally). However, none of this will be proved here.

6.3 A Compiler Will Be Another Project

Writing a compiler for CeXL will be a future project of mine, and I will not
describe this any further here.
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6.4 The Implementation Provided

Alongside this language specification, some essential parts of a CeXL implemen-
tation are provided. This implementation demonstrates that the language can
be implemented quite easily. The following code is provided online:

• The abstract syntax for the ξ-Calculus type system and expression lan-
guage. This is what is presented in section 13.

• An interpreter for ξ-Calculus is included. It implements the dynamic
semantics of section 17.

There is a very neat trick in this implementation which deserves men-
tioning. A function-value in the interpreter is implemented as a function
taking a ξ-Calculus-value as argument and returning a ξ-Calculus-value as
result. That is, by this datatype clause: datatype t = Fun of t -> t

where t also includes the constructors for all other ξ-Calculus-values. This
way we can also use precompiled functions as function values. Whenever
a function is declared in ξ-Calculus, the interpreter ”packs” the interpre-
tation of the closure into such a function. So when calling a function we
actually don’t care if it is interpreted or not - we can just execute it and
get the result.

• A simple pretty-printer for showing ξ-Calculus types using CeXL syntax.

• The unification relation for ξ-Calculus of section 14. This consitutes a
large part of the entire unification algorithm.

Most of this implementation of the unification relation deals with the
aspects required to support extensible records, optional fields and type
variables with restrictions, so this is significantly different than for the
usual unification relation of ML.

• The static type inference for ξ-Calculus of sections 15 and 16 is imple-
mented using a unification algorithm. This is the last part of the unifica-
tion algorithm.

• The abstract syntax for Naked CeXL along with functions for reducing
most of the Full CeXL syntax into Naked CeXL syntax. This is what is
presented in sections 18, 21 and 22.

• The translation from Naked CeXL to ξ-Calculus of section 19.

A binary version of all the above including a parser is also provided, along
with a fairly large set of CeXL programs for regression-testing. Everyting is
available online at:

• http://www.CeX3D.net/cexl/
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7 Results of Other Language Features Which

Have Been Considered

During the design of CeXL, other language features than those in the final
language has been explored. I will mention some important conclusions here.
These could be considered research results.

7.1 Relating Free Extension to Exactly Typed Records

and Optional Fields with Fieldcase

In this section we will justify that when requiring records to be exactly typed
while supporting optional fields in a way usable by a fieldcase construct we really
get all the power of free extension of records - but in a way which must use strict
extension at the type level in order to work. This also means that exactly typed
extensible records with optional fields usable for a fieldcase construct prevents
us from supporting truly free record extension without representing it as strict
extension at the type level. The use of the term exactly typed is as explained in
[Ohor92]. Let’s state all this as one claim:

Claim: Exactly typed records supporting optional fields in a way us-
able by a fieldcase construct in a language with ML’s polymorphism
implies that record extension must be strict at the type level.

Justification: We will do the justification by trying to give a type for
a function doing free extension with a field f for a record. We will get to
the conlusion that either it must be typed with strict extension or else we get
conflicts no matter what we try.

The types one could consider for a function adding the field f to a record
are only the following when we want exactly typed records:

(* free extension type 1 - gives conflict with unification *)

’a -> {f : int, ... : ’b}

(* free extension type 2 - gives conflicts with optional fields for fieldcase *)

’a -> {f : int, ... : ’a}

(* free extension type 3 - the types really use strict extension *)

{’b f : ’c, ... : ’a} -> {f : int, ... : ’a}

The comments indicate the conclusions we will get to during this justifica-
tion.

So consider the first type:

’a -> {f : int, ... : ’b}

We can easily make this work at first sight because the ’a and ’b are 2
independent types. We can just say that ’a may or may not contain the field f

- we don’t care. The record {f : int, ... : ’b} contains the field f and we
can easily define that ’b may not contain f. The problem here is that we have
no way of relating ’a and ’b to each other. So for instance we could instantiate
’a with {} and ’b with {dummy : real}. But if this is supposed to be the type
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of a function which only adds the field f to a record it is surely a problem that
it unifies with a function which also adds a field dummy! We will have problems
implementing such a function which chooses to add or remove fields correctly
at runtime only depending on the instantiation of its type where it is used. So
this type can be ruled out.

Consider the second type suggested:

’a -> {f : int, ... : ’a}

If we want exactly typed records we must accept that ’a is a record type
which either contains the field f or does not contain the field f.

If we consider when ’a does not contain f then everything is fine. This is
also the only way that CeXL will accept to interpret such a type by disallowing
’a to contain the field f in the above type.

If on the other hand we assume that ’a contains the field f then this type
starts to be doubtful because the record {f : int, ... : ’a} would contain
f twice then. This could be solved by defining that the f in ’a is replaced by
the explicitly mentioned f - which means that ’a inside the record does really
not contain f. This seems to be a conflict at first since the 2 occurences of ’a
would not unify then. We could solve this by making a distinction of when ’a

occurs alone and when it occurs inside another record type.
But a problem arises when we want to support optional fields. If the field f

is optional as in this type:

’a -> {’b f : int, ... : ’a}

Then if f is already present in ’a, the record {’b f : int, ... : ’a}

would contain an f potentially of a different type depending on whether the
explicitly mentioned f is present or absent. And then the fact that f is supposed
to be absent is not even true! We could decide that an explicit absent f removes
the field f from the type {’b f : int, ... : ’a} - i.e. f is removed if ’b is
instantiated to absent. This would be the only consistent behaviour here.

The problem with this comes when we actually want to extract the field f

from a record of type {’b f : int, ... : ’a}. If the explicitly mentioned f

overrides any f present in ’a then consider this program:

fun g ({f ?= f, ... = r} : {’b f : int, ... : ’a}) r2 =

if true then r else r2

If we were to allow such types as above then this program would take out an
optional f of the first record given to g. The result type of the function must be
compatiple with both r and r2. According to the type {’b f : int, ... : ’a},
r could contain a field f of another type than int! Thus the following call to f

would typecheck but be unsound:

val v = g {f = 5} {f = "Unsound"}

The following sure wouldn’t be any better, since we have f twice in the first
record:

val v = g {f = 5, f = "Unsound"} {f = "Unsound"}
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So clearly we must either disallow the ’a to contain f or assign a different
type than ’a to r2. If we choose a completly unrelated type variable ’c we have
a problem similar to the problem in the type ’a -> {f : int, ... : ’b} that
we considered in the very first example for a type for a function adding the field
f to a record. That is, the problem that ’c is completely unrelated to ’a.

So we have to accept that r2 must be given a type which prevents it from
containing the field f - but it must also unify with ’a! This means that a type
like {f : int, ... : ’a} must always prevent ’a from containing the field f

when we have to support optional fields suitable for a fieldcase construct.
This leaves us with the final type for adding the field f freely to a record:

{’b f : ’c, ... : ’a} -> {f : int, ... : ’a}

And this justifies the implication of the claim - that we must type record
extension as strict extension. �

A polymorphic free extension operation was implemented in the example in
section 3.10.

For comparison, the semantics of [Remy89] makes optional fields and free
extension of records coexist. It may be hard to do a direct comparison with
this article - but the point where this article fails in the above claim is that it
uses a kind of subtyping. This in turn means that records are not exactly typed.
As mentioned in section 4, all the articles [Wand87], [Wand88], [Remy92a],
[Remy92b] and [Ohor92] fail in not supporting optional fields in a way suitable
for allowing a fieldcase construct.

So, since the programs that CeXL is intended to be used for require both
extensible records, optional fields suitable for a fieldcase construct and exact
typing of records we can conclude that the design of CeXL with respect to
extensible records most likely can’t be done any better when using ML’s poly-
morphism. A few differences in the design of these records might be possible,
but not many significant differences.
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7.2 Considering Polymorphic Restrictions

When developing this semantics, some investigation has been done on support-
ing restrictions with polymorphism - i.e. such that restrictions can contain type
variables. An example would be: [’a : real | ’b list].

The conclusion of the investigation is that when supporting restrictions on
type variables in the first place, type variables used in restrictions must also
support restrictions themselves. This leads to a recursive notion of restrictions
on type variables. In the example above ’b does not have any restrictions but
during unification a restriction for ’b must be maintained.

The problem in the semantics, which was developed for this at an earlier
stage, was that every time a meta variable was instantiated during unification,
all types (up to the next closure operation) which at some point during the type
inference had been required to respect a restriction had to be rechecked that
they would still respect all restrictions after the instantiation. This would most
likely give a very high time complexity of the type inference - not to mention
that the semantics was quite complex. So this problem is not trivial - in case
anyone should endeavour the quest of looking into this.

It is possible that constraint semantics can handle this, but I have not looked
into this. To my knowledge, constraint semantics is also more complex if exposed
to the programmer - and it is certaintly not very ML-like.

7.3 Considering the Semantics of a General Typecase

During the development of this semantics it was initially decided to go with
a more general typecase construct instead of the fieldcase construct used now.
One point where it failed was when requiring polymorphism in restrictions on
type variables - as just described above.

It is not a problem to implement a typecase construct if we restrict ourselves
to restrictions on variables which are monomorphic. It doesn’t give any huge
benefits though - with the exception of being able to actually implement the
overloaded operators of Standard ML such as + and * directly in ξ-Calculus
(assuming we have the mono-typed operators available).

It should also be noted that mixing value-based case and typecase in one
language construct is not trivial either. This might give the programmer some
convenience but probably also some confusion.

A typecase using monomorphic restrictions would be almost enough for ξ-
Calculus to support the statically typed exceptions which we will briefly consider
now.
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7.4 Considering Staticly Typed Exceptions for ξ-Calculus

Staticly typed exceptions would be interesting. If we exploited restrictions ξ of
the form ψ/m on type variables α :: ξ, we could let the exception handler clauses
work as a typecase on exceptions. The exceptions being caught would then be
considered to have type α in an exception handler. Each declared exception
would have to generate a new exception type name which is unique across the
whole program. We could thus avoid introducing exceptions as a dynamic type,
which is what is done in ξ-Calculus and Standard ML. However, we would have
to prevent exceptions from containing type variables, to allow exception types
to be generated statically. An example of this can be found in the regression
test in section 25.4.

Supporting statically typed restrictions complicates the semantics of excep-
tion handlers though. In particular, we need to require that each clause has a
type disjoint from the other clauses, just as we would have to do in a general
typecase construct. A simple way is to just require an exception type in each
clause and that these be different in each clause. We still have to be able to
have a last clause for exception handling though, which is like a wild-card catch-
ing all types of exceptions. This would require a special-case in the semantics
regarding disjoint restrictions. As stated already, introducing general polymor-
phic restrictions for handling this is not trivial. So a simpler special-case for
this would be the closest one could get to a ”simple” way of handling statically
typed exceptions.

As described for the general typecase, it is also very difficult to mix the
notion of a value-based case and a typecase in one language construct. Being
restricted to only casing at types will make it more cumbersome to case out
different values in an exception handler - even though this is possibly done only
very rarely.

To sum up, statically typed exceptions avoids having to introduce a dynamic
type exn. However, it would also complicate the semantics quite a bit and
probably give some inconvenience for the programmer occasionally. So there
are not many things to count in favour of having exceptions statically typed.
This is why it has been ruled out as a feature for ξ-Calculus.
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7.5 Considering the Semantics of Record Concatenation

A good way of being able to concatenate two arbitrary records is described in
[Remy92a]. However this approach requires records to be abstracted as func-
tions.

It is easy to concatenate two records if one of the records has a known
type of a non-extensible record. We will describe this below. However, if both
records are either unknown or extensible (which also means that they are far
from completely known) it is... indeed a challenge! It means that we will end
up having a type variable for the extension part of each record. These two
type variables will be dependent on one another in some way. For instance, the
restrictions on one of the type variables could depend on the other type variable.

If we call the concatenation operator ##, one attempt at giving it a type
would be:

val [’a : ~{}, ’b : exclrec ’a] ## : ’a * ’b -> ???

The idea is that the restriction exclrec ’a should exclude the fields of
the record ’a in the record ’b. One problem is what the result type should
be. Another problem is that now we have a type variable in a restriction!
And according to the earlier arguments about polymorphic restrictions, this
can easily complicate things considerably.

If we restrict the concatenation to work only when one of the operands
(say the left operand) has a non-extensible record type, where all fields are
known, things become much simpler. It could for instance be added to CeXL
by syntactical rewriting, like the following:

val [’a : ~{lab_1, ,,, , lab_n}] ## :

{lab_1 : ’a_1, ,,, , lab_n : ’a_n} * ’a ->

{lab_1 : ’a_1, ,,, , lab_n : ’a_n, ... : ’a}

Here we use ,,, to denote repetition, to avoid confusion with the reserved
symbol .... Adding such a feature will have the limitation that it will sometimes
be required to add an explicit type specification for the left operand. This is
similar to when using ... in a record-pattern in Standard ML.

This kind of concatenation has not been added to the language. At the time
of this writing, I have actually only found one example where record concate-
nation would be useful for a 3D graphics application. I will not go through the
example, but it requires that both of the 2 records are extensible to be of any
benefit - which means that it is the hard way. However even in this example that
I found, a little extra manual coding in CeXL and extra work in maintaining
the code is an acceptable solution.
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8 How Hard it was to Create This Language

I have developed the CeXL programming language out of a need for a completely
general and extensible architecture for a 3D graphics application.

8.1 Early Investigation of 3D Architectures

In the beginning, it was not even realized that this should in fact be a program-
ming language. Hard investigation of exsisting architectures for 3D graphics
applications has been a large initial part of the quest, which I began already
around 1997-1998. The plugin architecture of the 3D program Maya [Maya] has
been a very prominent source of inspiration for this part. Discussions with cer-
tain people about programming languages, OpenGL, 3D graphics architectures,
semantics and whatnot has also been a source of inspiration.

8.2 An Old Version of CeXL Has Been Used Until Now

When it was realized that it was in fact a programming language which was
needed, some experiments and implementations of extensible records were first
created. In fact, for a long time there has been an early implementation and
formal grammar description of CeXL. This version of the language never had
a complete semantics and the implementation had problems handling the com-
bination of optional fields and extensible records in certain cases. At the time
of this writing, this old language is used in the commercially available program
CeX3D Converter [CeXC], the interactive showreel available from Hardcore
Processing [HcPReel] and an in-house 3D graphics application at Hardcore Pro-
cessing called CeX3D SM [CeX3DSM] - for subdivision surface modelling.

The reader can download the free demo versions of CeX3D Converter [CeXC]
to verify some of these facts. The old download directory
http://www.CeX3D.net/Download/ (yes, that must be written with an upper-
case ’D’) contains older versions of CeX3D Converter. The version 3.5 (which
was released 2000-10-29) and later versions use the old CeXL language. Try
loading the binary file of such a version into a text editor and search for some
text which looks like record types :-) These types are string constants in the
program (which is why you can see them in the binary file as text) and are
used for type-checking the CeXL representation of 3D objects loaded by CeX3D
Converter.

Indeed, the problems mentioned above with the combination of optional
fields and extensible records can be provoked by a known bug in earlier versions
of CeX3D Converter. When converting 3D objects with certian properties from
LightWave [LightWave] format, the program would give a type error message
from the type-check!
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8.3 Development of CeXL for This Specification

Both developing the old version of CeXL and continuing the development up to
the current version has been really hard work. During the initial work on the old
CeXL language, mostly optional fields and extensible records were investigated
and gave many challenges. Every time one tries solving one problem, some new
problem turns up and requires the whole thing to be thought through all the
way from the beginning.

The same has continued to happen during the development up to the present
version of CeXL. Everytime a small change is made or the next feature is to
be added, the whole thing needs to be redesigned - usually several times before
one gets it right. Writing a semantics enables one to literally work on the whole
language at the same time without loosing the overview. However it really is
required that one has the whole language in one’s head at the same time to
make everything work. It can be said that designing a programming language
is not a deterministic process.

One thing that makes the semantics of CeXL very hard is that it is statically
typed. There is a substantial amount of work just in getting the type inference
and the whole static semantics to work - just for checking that the programs
are valid. On the other hand, writing the dynamic semantics for this is quite
easy. However, it is also this static typing which gives the language many
benefits. In particular with respect to efficient implementation and prevention
of programmer mistakes.

It is conceivable that using Action Semantics [Action] (instead of Opera-
tional Semantics) would make the design process simpler and more modular.
However I have not looked into this.

8.4 The Ease of Implementation From Semantics

When the semantics of the language is complete, creating a simple interpreted
implementation of the language is a relatively small task. Writing the interpreter
for the ξ-Calculus language was trivial. Implementing the type inference for ξ-
Calculus requires understanding of the much more difficult static semantics -
but it was not very hard for me to implement this, since I wrote the semantics.
Implementing the Naked CeXL to ξ-Calculus translation may be a little tedious
but is easy and it reduces the language considerably. The syntactical reduction
from the full CeXL grammar to the Naked CeXL grammar is easily done on the
fly during parsing of the grammar.
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8.5 Conclusion And Warnings About Language Design

Let’s state it again - designing this language was hard. So, be thankful that you
only have to read and understand this final language specification (even though
it may be hard reading) and not all the problems that I had to go through to
get to this final specification. Many problems are already solved in Standard
ML, but changing some of the fundamentals and putting it all together into a
new language is hard.

If you stray aside from this semantics even just a little bit without knowing
what you’re doing - you are likely to run into heavy problems. So, adding new
features to this language is not something that you can always just do.

Some syntac sugar is easy to add of course - like adding classes and objects
with structural inheritance as in an object oriented language. This is because
the fundamental semantics with its extensible records can handle this already
(see the future work section).

However, altering the more fundamental behaviour of the language, such
as tangling too much with the restrictions on type variables, changing the be-
haviour of extensible records or optional fields or the likes will lead down very
dark and cloudy path in your life. This is true in particular if you haven’t got
experiences similar to those that I gained while designing this language.
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9 Grand Conclusion

The following sums up some of the most important conclusions and results of
this specification for the CeXL language:

• A language specification for a complete programming language for real-life
use has been defined. The intended use is domain specific for certain 3D
graphics applications.

• The language specification has formal grammar and semantics for all as-
pects of the language.

• It is likely that the soundness property for this language holds - even
though it has not been proved. The worst case scenario on this issue
should be that a few details might have to be corrected or modified.

• The language is compatiple with Standard ML ’97 to a high degree.

• The language has a substantial feature set relating to extensible records,
optional record fields and type variables with restrictions, none of which
are present in Standard ML ’97. These features all complement one an-
other in many ways to make the language as useful as possible for what
the language has been designed for.

• Some justification that the most central part of the language could not
have been done any better has been made, when taking the design require-
ments into consideration.

• Many alternative features for the language have been explored and it has
been argued what challenges or problems exist regarding those features.

• An implementation for the most central parts of the language is supplied,
including many regression test programs for a complete implementation.
It is verified that the implementation works as expected and no problems
are identified.

• An implementation and future versions of this specification will be main-
tained online at:

http://www.CeX3D.net/cexl/
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10 Directions for Future Work

I would like (did I have the time) to extend the language in the following ways:

• Extend it to the full Standard ML [SML97] - possibly stripping off a
few obsolete features and making minor ajustments to other features of
SML’97. This includes adding a full module system and either removing
equality types entirely or representing their polymorphism using restric-
tions. [ML2000] has good suggestions for what could be removed.

• An alternative to the SML Module System could be considered. I have
some specific ideas in this direction but they will not be mentioned here.

• It might be worth considering to restructure the semantics so that it be-
comes more similar to the FLINT language [Shao97].

• We can currently, without any changes to the semantics, add classes and
objects with structural inheritance to the language as syntactic sugar as
described in [Wand88]. Since we don’t have record concatenation, we can
not handle multiple inheritance though. It would require something like
a general typecase construct and more general polymorphic restrictions
on type variables to do statically typed downcasts. As mentioned, the
polymorphic restrictions would most likely increase the complexity of the
semantics considerably - if not also the time complexity of the type infer-
ence. However these ideas are interesting.

10.1 Closing Remarks About the Future

The CeXL language of this specification will be incorporated in CeX3D Con-
verter [CeXC] and CeX3D SM [CeX3DSM] as soon as possible. CeX3D SM is
still an in-house program at Hardcore Processing though and is still very slow
to work with, since the implementation is still only an interpreter. So it is not
known when this will be relased to the public. This will also require a revised
design of another language, ICeXL, which is used by CeX3D SM - a language
which has values in the same type system as CeXL.

Other computer graphics related applications which are based on CeXL
might also soon see the light of day.

Most importantly, all these applications will be easy to extend from now on,
which is the whole point of the CeXL language. Writing a compiler for CeXL
has a high priority now, so that for instance CeX3D SM will become a very
fast computer graphics application - which is also one of the points of the CeXL
language.

In short, the completion and release of this specification is quite an important
event at Hardcore Processing. It is hopefully soon to become important for the
entire computer graphics industry as well :-)

• An implementation and future versions of this specification will be main-
tained online at:

http://www.CeX3D.net/cexl/
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12 Appendices

The last sections of this document are the appendices containing the semantics
and the actual language specification of CeXL. We will start the appendices by
giving a short overview of the language specification.

12.1 The Languages and Calculi Presented

The final language we wish to present is called CeXL. This in turn is reduced
purely syntactically to Naked CeXL, which is the essential part of the language.
Naked CeXL is implemented on top of a more fundamental calculus called ξ-
Calculus. The languages will be presented in a bottom-up fashion, by starting
with all the hard work on ξ-Calculus.

All the semantics for ξ-Calculus is presented first. Then we present Naked
CeXL and a translation from Naked CeXL to ξ-Calculus. Finally the real syntax
of CeXL is presented along with how to reduce this into Naked CeXL. Every-
thing is put together at the end by a description of the initial environments for
the semantics and for the translation into ξ-Calculus and a description of how
to apply everything to type-check and execute a CeXL program.

12.2 About the Separate ξ-Calculus

A goal of the calculus is to be able to translate Naked CeXL into ξ-Calculus and
afterwards do type inference directly in ξ-Calculus. So there is no type inference
on the source programs - not even on the reduced Naked CeXL programs. This
turns the calculus into a kind of base programming language for implementing
Naked CeXL and thus also CeXL.

One feature of Naked CeXL that we cannot represent in ξ-calculus is the
datatype definitions and the exception declarations. The types and construc-
tors generated from such declarations are inserted directly into the ξ-Calculus
code without separate declarations. However we have to insert exception con-
structors to ensure correct scoping of type variables and correct static semantics
of exception declarations
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13 Implicitly Typed ξ-Calculus

The following is the type system and the expression language of ξ-Calculus.
This is the most important page of this specification. The comments on the
next 2 pages give a slight idea of its meaning.

13.1 Syntax and Semantic Objects for the Type System

Syntax Name Semantic Objects

lab Lab = ”Record labels”
x VId = ”Variable identifiers”
α TyVar = ”Type variables”
β MetaVar = ”Meta variables”
a PName = ”Type parameter names” for constructor types
d TyName = ”Type names”
c CName = ”Constructor names”

ω ::= {lab1, . . . , labn} ExclLabs = Fin(Lab)

ψ ::= [a1 = ψ1, . . . , an = ψn]d{c1, . . . ,ck} TyPat ∪p≥0 (PName × TyPat)p × TyName × Fin(CName)

ψ/m ::= ψ1 / · · · / ψm TyPats = ∪p≥1 TyPatp

ξ ::= ◦ | ω | ψ/m Restrict = ∅ ∪ ExclLabs ∪ TyPats

γ ::= α :: ξ | β :: ξ Vars = TyVar × Restrict ∪ MetaVar × Restrict

ρ ::= {lab1 : τ1, . . . , labm : τm; τ} | {} Row = (Lab fin
→

Type) × Type ∪ ∅

φ ::= τ ? τ ′ Field = Type × Type

κ ::= [a1 = τ1, . . . , an = τn]d{c1, . . . ,ck} ConsType = ∪p≥0 (PName × Type)p × TyName × Fin(CName)

τ → τ ′ Fun = Type × Type

τ ::= γ | τ → τ ′ | ρ | φ | κ Type = Vars ∪ Fun ∪ Row ∪ Field ∪ ConsType

σ ::= ∀[α1 :: ξ1, . . . , αn :: ξn].τ TyScheme = ∪p≥0 (TyVar × Restrict)p × Type

r ::= {lab1 : τ1, . . . , labn : τn} OrderRow = Lab fin
→

Type

13.2 A Syntax for ξ-Calculus Expressions

(expression) e ::= λx.e | e1 e2 | x | e : τ | c : σ | c ex τ | scon |
{ } | {lab1 = e1, . . . , labm = em, e} | e1 ? e2 |
let p1 = e1 ; · · · ; pn = en in e |
letrec p1 = e1 ; · · · ; pm = em in e |
letex c1 : τ1, . . . , cm : τm in e |
e handle p1 ⇉ e1 ‖ · · · ‖ pm ⇉ em | raise e
case e of p1 ⇉ e1 ‖ · · · ‖ pm ⇉ em |
fieldcase e in α of absent ⇉ e1 ‖ present p ⇉ e2 type τ |

(pattern) p ::= x | p : τ | x as p | c : σ | c(p) : σ | c ex | c(p) ex τ | scon | |
{ } | {lab1 = p1, . . . , labm = pm, p} | p1 ? p2
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13.3 Comments on the Type System

The following gives a breif idea of the type system - but the details follow later:

• The ξ represents restrictions on the allowed instantiations of type variables
and meta variables.

• The restriction ◦ means ”no restrictions” - so α :: ◦ is like a ”normal” type
variable in Standard ML.

• The restriction ω represents a record excluding the labels ω.

• The restriction ψ/m is a list of allowed (mutually disjoint) constructor
types. Each such type in the list is a ψ.

• The empty record {} in ρ really represents: ”All as-of-yet undefined fields
are absent”. This is actually what is seen as the type unit in CeXL. All
concrete record values in CeXL consist of some or no extensible records
extending one another and finally being extended by {} at the end. Each
such extensible record is written as {lab1 : τ1, . . . , labm : τm; τ}. It is only
in functions, type declarations and the likes that it makes sense to have
extensible record types which are not ending with {}, in which case they
would end with a meta variable or a type variable.

• β :: ω may not be instantiated with a record without fields with new
β′ :: ω′, i.e.: β :: ω 7→ {;β′ :: ω′}. Instead it should be instantiated
with β :: ω 7→ β′ :: ω′. If we did not forbid this we would have problems
unifying the types β :: ω and {;β :: ω} with each other. We ensure this in
the inference rules of record expressions and record patterns for ξ-Calculus.
The reason why β :: ω and {;β :: ω} would have to unify with each other
is that they both denote an extensible record excluding the fields ω - i.e.
they denote exactly the same thing.

• Consider the ai used in the ai = τi in the constructor parameters in Con-
sType and the ai = ψi in the parameters for the type pattern constructor
in TyPat. These ai are to be considered parameter names for construc-
tor types. They will correspond to the type variable names of the closed
type scheme of constructors. However they may not be considered type
variables - which is why they are denoted ai and not αi. They are for
allowing type parameters to be identified based on names rather than the
order in which they appear. This is for giving CeXL the feature Named
Type Parameters.

• The ConsType contains a finite set of constructor names (the Fin(CName)).
These are the names of the constructors that the ConsType has declared.
This is only used by an implementation to ensure correct implementation
of pattern-matches and the checks that pattern-matches are exhaustive
where this is required. This also means that they are not used at runtime,
so an implementation can remove them after type inference.

An example of a constructor type in CeXL is the type bool which would
be represented by: []bool{true, false}. The type int is represented by:
[]int{· · · } to signify that it has many constructors (i.e. all the supported
integer constants). The type int list becomes: [a = []int{· · · }]list{nil, ::}.
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• ConsType is also used for exceptions. Here only one predeclared construc-
tor is used: []exn{}. It is treated specially, since it gets its constructors
added separately through exception declarations. Therefore we use an
empty list of constructor names for it. The constructor []exn{} may only
be used with the ex constructs and in type specifications in ξ-Calculus.
Restrictions on the number k of constructor names allowed where Con-
sType occurs in will ensure this. When k ≥ 1 it cannot be []exn{}.

• The class Field of the form τ ? τ ′ denotes the type of a record field. τ
may only be the type []present{present}, the type []absent{absent} or a
meta variable or type variable properly restricted to such instantiations.
τ ′ is the type of the value in the record field.

• σ is used in the value environment and for representing the closed types
of constructors. Constructors will have σ of one of the following 2 forms:
∀[α1 :: ξ1, . . . , αn :: ξn].[a1 = α1 :: ξ1, . . . , an = αn :: ξn]d{c1, . . . , ck} or
∀[α1 :: ξ1, . . . , αn :: ξn].τ

′ → [a1 = α1 :: ξ1, . . . , an = αn :: ξn]d{c1, . . . , ck}.

As we shall see later these type schemes must generalize some type τ ,
which is written σ ≻ τ .

During type inference the names ai must be chosen so that they are the
same as the αi to avoid confusing the programmer and to avoid problems
in identifying parameters in type patterns.

• r is only used during unification, where we will need to store a finite set of
labels mapped to types. This is for transforming a record into a semantic
representation where records are not treated as a recursive list of smaller
records extending each other - as they usually are when represented by ρ.
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14 Static Semantics of ξ-Calculus - Unification

This section gives explicit inference rules for the unification between 2 given
types. We need this to be able to implement a unification algorithm for the
semantics of ξ-Calculus. The unification relation between 2 given types can be
briefly stated as follows:

It is the standard unification relation with the following changes:

• All polymorphic variables and meta variables have restrictions on them
which limit what they may be instantiated with. These restrictions are
maintained by the unification

• Equality of records during unification is modulo reordering of fields. This
is achieved by converting any records encountered to a semantic represen-
tation (denoted r in the syntax for the type system) which is independent
of the order of the fields of the record. Unification of records is done using
this representation because record types in ξ-Calculus may be composed
of several smaller record types extending each other as a sequential list
of records. For example, if we did not do this we would have problems
unifying {lab1 : τ1; {lab2 : τ2; τ}} and {lab2 : τ2; {lab1 : τ1; τ}} with each
other. Such two record types must unify, since they both denote the type
of an extensible record with two fields, lab1 and lab2 of types τ1 and τ2
respectively, where both record types are extended with τ . So the two
types denote exactly the same record.

• The unification relation deals with maintaining the property that exten-
sible record types may never redefine the same field twice.

• Record fields must have field types of the form τ ? τ ′ where τ is either
[]absent{absent} or []present{present} or a type variable or meta variable
which is properly restricted to these instantiations

• Non-extensible records are represented modulo equality of {} at the end of
the record with records of absent fields and new {} types - e.g. equalities
like:
{} = {lab : []absent{absent} ? τ ; {}}

Ordered records r and meta variables β from our semantic objects are only
used for the unification when implementing the semantics. r is for transforming
a record into the semantic representation mentioned above and β are the place
holders for unknown types during unification. One exception though is that
we explicitly have to handle meta variables in the rules for explicit type spec-
ifications in ξ-Calculus. This is necessary to support the feature Partial Type
Instantiation.
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14.1 Formal View and Implementation of Meta Variables

with Restrictions

Restrictions on meta variables must always be defined at the time the meta
variable is created - and they may never change. To restrict an existing meta
variable further, it has to be bound to a new meta variable with a tighter but
compatiple restriction. A meta variable may also only be bound to another
type or meta variable once, and never be rebound. Whenever a meta variable
is bound to a type (or a type variable or a meta variable), it must be checked
that the type respects the restriction of the meta variable. We can only write a
correct unification relation if we follow those guidelines.

When dealing with meta variables with restrictions, we adopt the following
view:

• Meta variables will have restrictions at creation time which may never
change. Meta variables with restrictions are denoted β :: ξ, where β is the
variable and ξ its restriction.

• We will assume that we have an environment env which binds meta vari-
ables to types.

When implementing the unification relation there are 2 simple ways of rep-
resenting meta variables with restrictions:

• We can emulate having just 1 environment, by keeping an updatable ref-
erence cell with each meta variable. The reference is either a restriction
or a bound type. Restrictions may be updated to bind a compatiple type,
which in turn may just be another meta variable with a tighter but com-
patiple restriction. However types may not be updated once they have
been bound the first time.

• It could also be that one prefers to have a data structure where restric-
tions and bound types are stored separately, which can be done by always
keeping the restriction (which may never change) with each meta variable
and an updatable reference cell containing an optional bound type.

14.2 Unification of Restrictions

In all the inference rules presented where two restrictions have to be unified, it
is always enough to check that they are simply equal. So we never do a general
unification on restrictions.

All the special issues of restrictions should be handled appropriately by the
inference rules of the unification relation which will be presented.

14.3 Restrictions on Types: τ |ξ

We need to be able to impose restrictions on types in the semantics of ξ-calculus
in the rules for extensible records, record fields and fieldcase. This is done during
unification by introducing a fresh meta variable with a restriction. To write a
semantics for ξ-calculus which does not involve meta variables we introduce
the notation τ |ξ to denote that τ is a type restricted by ξ. During unification
this just means introducing a new meta variable with restriction ξ by setting
τ = β :: ξ for a fresh β.
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14.4 Judgement Forms for the ξ Unification Relation

Unifying Judgements

τ ↔ τ ′ Unify τ and τ ′.
r; τ ↔emptyrec Unify record r which ends in τ with the empty record.
r; τ ↔rec r′; τ ′ Unify records r and r ’ where r ends with τ and r ’ ends with τ ′.
τ ;ω ⊢ord r; τ ′ Convert record τ to representation r which

is independent of the order of fields and which ends in τ ′.
τ is prevented from containing any of the fields in ω.

Checking Judgements

τ ≫ ξ Check that τ respects the restriction ξ.
This will not do any unification (i.e. no β will be bound).

τ ≫ ψ Check that τ respects the restriction ψ.
This will not do any unification (i.e. no β will be bound).

ψ ≫ ξ Check that ψ respects the restriction ξ.
This will not do any unification (i.e. no β will be bound).

ξ ≫ ξ′ Check that ξ is more restrictive than ξ′.
It can also be understood as ξ being ”less polymorphic” than ξ′.
This will not do any unification (i.e. no β will be bound).

14.5 Inference Rules for the ξ Unification Relation

14.5.1 Unifying Types Different From Records and Meta Variables

τ ↔ τ ′

α :: ξ ↔ α :: ξ (1)

τ ↔ τ ′′ τ ′ ↔ τ ′′′

τ → τ ′ ↔ τ ′′ → τ ′′′
(2)

τ ↔ τ ′′ τ ′ ↔ τ ′′′

τ ? τ ′ ↔ τ ′′ ? τ ′′′
(3)

∀i ∈ {1, . . . , n} : τi ↔ τ ′i n, k ≥ 0
[a1 = τ1, . . . , an = τn]d{c1, . . . , ck} ↔ [a1 = τ ′1, . . . , an = τ ′n]d{c1, . . . , ck}

(4)

Comments:

• Rule (4): We must support unification of []exn{} so k ≥ 0.
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14.5.2 Unifying Meta Variables

τ ↔ τ ′

β ∈ Dom env
env(β) ↔ τ
β :: ξ ↔ τ

(5)

β 6= β′ β /∈ Dom env β′ ∈ Dom env
β :: ξ ↔ env(β′)
β :: ξ ↔ β′ :: ξ′

(6)

β /∈ Dom env
β :: ξ ↔ β :: ξ

(7)

β /∈ Dom env m ≥ 1
{lab1 : τ1, . . . , labm : τm; τ}, {} ⊢ord r; τ ′

{};β :: ω ↔rec r; τ ′

β :: ω ↔ {lab1 : τ1, . . . , labm : τm; τ}

(8)

β /∈ Dom env m ≥ 1
β′ fresh ω = {}

{lab1 : τ1, . . . , labm : τm; τ}, {} ⊢ord r; τ ′

{};β′ :: ω ↔rec r; τ ′

β does not occur in any of τ1, . . . , τm, τ
β :: ◦ ↔ {lab1 : τ1, . . . , labm : τm; τ}

bind(env, β 7→ β′ :: ω)

(9)

β /∈ Dom env
β does not occur in τ

τ 6= {lab1 : τ1, . . . , labn : τn; τ
′}

τ 6= β′ :: ξ′ τ ≫ ξ
β :: ξ ↔ τ

bind(env, β 7→ τ)

(10)

β 6= β′ β, β′ /∈ Dom env ξ′ ≫ ξ
β :: ξ ↔ β′ :: ξ′

bind(env, β 7→ β′ :: ξ′)
(11)

β 6= β′ β, β′ /∈ Dom env ξ ≫ ξ′ ξ′ 6= ξ
β :: ξ ↔ β′ :: ξ′

bind(env, β′ 7→ β :: ξ)
(12)

τ 6= β′ :: ξ′ β :: ξ ↔ τ
τ ↔ β :: ξ

(13)
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Comments:

• Rules (8), (9): Unification with an extensible record must be handled
specially.

• Rule (10): The premise τ ≫ ξ ensures that τ really respects the restriction
ξ before τ is bound to β.

• Rules (11), (12): The least restrictive should have the most restrictive
bound to it. Rule (11) also covers the case where the restrictions are the
same, where we don’t care which variable is bound to which.

• Rule (13): The unification is symmetric.
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14.5.3 Unifying Records

τ ↔ τ ′

m,n ≥ 1
{lab1 : τ1, . . . , labn : τn; τ}, {} ⊢ord r; τ ′′

{lab′1 : τ ′1, . . . , lab
′
m : τ ′m; τ ′}, {} ⊢ord r′; τ ′′′

r; τ ′′ ↔rec r′; τ ′′′

{lab1 : τ1, . . . , labn : τn; τ} ↔ {lab′1 : τ ′1, . . . , lab
′
m : τ ′m; τ ′}

(14)

{} ↔ {} (15)

m ≥ 1
{lab1 : τ1, . . . , labm : τm; τ}; {} ⊢ord r; τ ′

r; τ ′ ↔emptyrec

{} ↔ {lab1 : τ1, . . . , labm : τm; τ}

(16)

m ≥ 1
{lab1 : τ1, . . . , labm : τm; τ}; {} ⊢ord r; τ ′

r; τ ′ ↔emptyrec

{lab1 : τ1, . . . , labm : τm; τ} ↔ {}

(17)

14.5.4 Unifying With the Empty Record

r; τ ↔emptyrec

∀labi ∈ Dom r : r(labi) ↔ []absent{absent} ? τi
r; {} ↔emptyrec (18)

∀labi ∈ Dom r : r(labi) ↔ []absent{absent} ? τi
r;β :: ω ↔emptyrec

bind(env, β 7→ {})
(19)

Comments:

• Rule (19): The β :: ω here comes from the relation τ ;ω ⊢ord r; τ ′ which
guarantees that β /∈ Dom env.
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14.5.5 Unifying Order Independent Records

r; τ ↔rec r′; τ ′

∀labi ∈ Dom r\Dom r′ : r(labi) ↔ []absent{absent} ? τi
∀labi ∈ Dom r′\Dom r : r′(labi) ↔ []absent{absent} ? τ ′i

∀labi ∈ Dom r ∩Dom r′ : r(labi) ↔ r′(labi)
r; {} ↔rec r′; {}

(20)

∀labi ∈ Dom r\Dom r′ : r(labi) ↔ []absent{absent} ? τi
∀labi ∈ Dom r′\Dom r : r′(labi) ↔ []absent{absent} ? τ ′i

∀labi ∈ Dom r ∩Dom r′ : r(labi) ↔ r′(labi)
r;α :: ω ↔rec r′;α :: ω

(21)

β′′ fresh m, n ≥ 0
∀labi ∈ Dom r ∩Dom r′ : r(labi) ↔ r′(labi)

{lab1, . . . , labn} = Dom r\Dom r′ {lab1, . . . , labn} ∩ ω′ = ∅
{lab′1, . . . , lab

′
m} = Dom r′\Dom r {lab′1, . . . , lab

′
m} ∩ ω = ∅

β′ does not occur in any of r(lab1), . . . , r(labn)
β does not occur in any of r′(lab′1), . . . , r

′(lab′m)
r;β :: ω ↔rec r′;β′ :: ω′

if n ≥ 1 : bind(env, β′ 7→ {lab1 : r(lab1), . . . , labn : r(labn);β
′′ :: ω ∪ ω′})

if n = 0 : bind(env, β′ 7→ β′′ :: ω ∪ ω′)
if m ≥ 1 : bind(env, β 7→ {lab′1 : r′(lab′1), . . . , lab

′
m : r′(lab′m);β′′ :: ω ∪ ω′})

if m = 0 : bind(env, β 7→ β′′ :: ω ∪ ω′)
(22)

ω ⊆ ω′ m ≥ 0
{lab1, . . . , labm} = Dom r′\Dom r {lab1, . . . , labm} ∩ ω = ∅

Dom r\Dom r′ ∩ ω′ = ∅
∀labi ∈ Dom r\Dom r′ : r(labi) ↔ []absent{absent} ? τi

∀labi ∈ Dom r ∩Dom r′ : r(labi) ↔ r′(labi)
β does not occur in any of r′(lab1), . . . , r

′(labm)
r;β :: ω ↔rec r′;α :: ω′

if m ≥ 1 : bind(env, β 7→ {lab1 : r′(lab1), . . . , labm : r′(labm);α :: ω′})
if m = 0 : bind(env, β 7→ α :: ω′)

(23)

m ≥ 0
{lab1, . . . , labm} = Dom r′\Dom r {lab1, . . . , labm} ∩ ω = ∅

∀labi ∈ Dom r\Dom r′ : r(labi) ↔ []absent{absent} ? τi
∀labi ∈ Dom r ∩Dom r′ : r(labi) ↔ r′(labi)

β does not occur in any of r′(lab1), . . . , r
′(labm)

r;β :: ω ↔rec r′; {}
if m ≥ 1 : bind(env, β 7→ {lab1 : r′(lab1), . . . , labm : r′(labm); {}})

if m = 0 : bind(env, β 7→ {})

(24)

r′;β :: ω′ ↔rec r;α :: ω
r;α :: ω ↔rec r′;β :: ω′ (25)

r′;β :: ω ↔rec r; {}
r; {} ↔rec r′;β :: ω

(26)
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Comments:

• Rule (21): The α :: ω comes from the τ in the relation τ ′;ω′ ⊢ord r; τ so it is
already ensured thatDom r\Dom r′∩ω = ∅ and thatDom r′\Dom r∩ω =
∅.

• Rules (22)-(26): All the β :: ω here comes from the relation τ ;ω ⊢ord r; τ ′

or the unification with meta variables, so it is already guaranteed that
β /∈ Dom env.

• Rule (23): The premise {lab1, . . . , labm}∩ω = ∅ is actually not necessary,
because is already ensured by the premise ω ⊆ ω′ and because the α :: ω′

comes from the τ ′ in the relation τ ;ω ⊢ord r; τ ′, where it is already ensured
that {lab1, . . . , labm} ∩ ω′ = ∅.

• Rules (22), (23) and (24): We only bind meta variables to an extensible
record if there is at least one field. Otherwise we just bind each meta
variable directly to either another meta variable, a type variable or the
empty record, respectively.

• Rules (25) and (26): The unification is symmetric.
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14.5.6 Making Record Fields Independent of Order

τ ;ω ⊢ord r; τ ′

{lab1, . . . , labm} ∩ ω = ∅ m ≥ 1
ω′ = ω ∪ {lab1, . . . , labm} τ ;ω′ ⊢ord r; τ ′

{lab1 : τ1, . . . , labm : τm; τ};ω ⊢ord r ∪ {lab1 : τ1, . . . , labm : τm}; τ ′
(27)

{};ω ⊢ord {}; {} (28)

β /∈ Dom env ω′ ⊆ ω
β :: ω;ω′ ⊢ord {};β :: ω

(29)

β /∈ Dom env β′ fresh ω′ * ω

β :: ω;ω′ ⊢ord {};β′ :: ω ∪ ω′

bind(env, β 7→ β′ :: ω ∪ ω′)
(30)

β /∈ Dom env β′ fresh

β :: ◦;ω ⊢ord {};β′ :: ω
bind(env, β 7→ β′ :: ω)

(31)

β ∈ Dom env env(β);ω ⊢ord r; τ
β :: ξ;ω ⊢ord r; τ

(32)

ω′ ⊆ ω

α :: ω;ω′ ⊢ord {};α :: ω
(33)

Comments:

• Rule (29): The premise β /∈ Dom env here means that the variable has not
been bound to the environment before. And since β is given as ”input”
to the clause it really means that β is an already allocated but still free
variable. In this rule the meta variable β :: ω is just kept as it is and
returned from the clause, since ω′ is a subset of or equal to ω.

• Rule (30): In this rule β′ is just a fresh variable with an new name, which
could also have been expressed as β′ /∈ Dom env but we use the notation
fresh to indicate the purpose. The bind(env, β 7→ β′) in the conclusion
means that we bind the previously free variable β to the new variable β′.
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14.5.7 Type Respects Restriction

τ ≫ ξ

ξ ≫ ξ′

α :: ξ ≫ ξ′
(34)

τ 6= α :: ξ τ 6= β :: ξ′

τ ≫ ◦
(35)

m ≥ 1
τ 6= α :: ξ τ 6= β :: ξ′

∃i ∈ {1, . . . ,m} : τ ≫ ψi
τ ≫ ψ1 / · · · / ψm

(36)

{} ≫ ω (37)

τ ≫ ψ

β ∈ Dom env env(β) ≫ ψ

β :: ξ ≫ ψ
(38)

ξ ≫ ψ

α :: ξ ≫ ψ
(39)

∀i ∈ {1, . . . , n} : τi ≫ ψi n, k ≥ 0

[a1 = τ1, . . . , an = τn]d{c1, . . . , ck} ≫ [a1 = ψ1, . . . , an = ψn]d{c1, . . . , ck}
(40)

Comments:

• Notice that neither the relation τ ≫ ξ nor the relation τ ≫ ψ does any
unification.

• Rule (36): We can safely use ∃ here since τ ≫ ψi does not unify anything.

• Notice that there is no rule for β :: ξ where β /∈ Dom env in the relation
τ ≫ ψ. Nested [a1 = τ1, . . . , an = τn]d{c1, . . . , ck} may contain β :: ξ
and in a perfect world this would really require unification. So ξ-Calculus
and thus also CeXL has the limitation that the programmer may have to
supply an explicit type constraint somewhere to avoid this situation.

• Rule (38): The premise env(β) ≫ ψ is checked with the relation τ ≫ ψ.

• Rule (39): The ψ in the premise ξ ≫ ψ here is really a ξ consisting of a
single ψi in a ψ1 / · · · / ψm. So this premise is checked with the relation
ξ ≫ ξ′ which does not do any unification.

• Rule (40): We must be able to unify []exn{} so k ≥ 0.
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14.5.8 Type Pattern Respects Restriction

ψ ≫ ξ

ψ ≫ ◦
(41)

ψ ∈ {ψ1, . . . , ψm}

ψ ≫ ψ1 / · · · / ψm
(42)

14.5.9 ξ More Restrictive Than ξ′

ξ ≫ ξ′

ξ ≫ ◦
(43)

ω ⊇ ω′

ω ≫ ω′
(44)

1 ≤ n ≤ m {ψ1, . . . , ψn} ⊆ {ψ′
1, . . . , ψ

′
m}

ψ1 / · · · / ψn ≫ ψ′
1 / · · · / ψ′

m

(45)

Comments:

• Rules (41) and (42): These rules are only used in the translation from
Naked CeXL to ξ-Calculus.

• Rule (45): This only works as intended because all ψi are mutually disjoint
and similarly for all ψ′

j . The intuition is that for the left hand side to be
more restrictive, it must have less type patterns and each type pattern
must exist on the right hand side.

72



15 Static Semantics of ξ-Calculus - Inference

This section describes the general rules which are used when doing type inference
for the static semantics of ξ-Calculus.

15.1 Environments

We will use the following environments for the static semantics of ξ-Calculus:

Γ VId fin
→ TyScheme Environment of variables bound to type schemes

∆ TyVar fin
→ Restrict Environment of type variables bound to restrictions

15.2 Generalizing by Type Schemes: σ ≻ τ

At certain points during type inference, type schemes must generalize some type
being inferred. This is written σ ≻ τ . In practice, for an implementation based
on the unification algorithm, this means that the variables α1 :: ξ1, . . . , αn :: ξn
must be instantiated with meta variables β1 :: ξ1, . . . , βn :: ξn with the same
restrictions. Thus, the ∀ quantifier disappears and the type resulting from the
instantiation is ready to be unified, since it contains appropriate meta variables.

To spell it out, if σ has the form

∀[α1 :: ξ1, . . . , αn :: ξn].[a1 = α1 :: ξ1, . . . , an = αn :: ξn]d{c1, . . . , ck}

then we can set

τ = [a1 = β1 :: ξ1, . . . , an = βn :: ξn]d{c1, . . . , ck}

where τ is now the type ready for unification. If instead σ has the form

∀[α1 :: ξ1, . . . , αn :: ξn].τ ′ → [a1 = α1 :: ξ1, . . . , an = αn :: ξn]d{c1, . . . , ck}

we set (using the typical notation for substitution in τ ′ inside the ⌈ ⌉)

τ = τ ′⌈β1 :: ξ1/α1 :: ξ1, . . . , βn :: ξn/αn :: ξn⌉ →
[a1 = β1 :: ξ1, . . . , an = βn :: ξn]d{c1, . . . , ck}

As mentioned earlier, σ will always have one of these 2 forms for constructors.
If σ is an arbitrary type scheme it will have the general form

∀[α1 :: ξ1, . . . , αn :: ξn].τ ′

in which case we can set (again using the notation for substitution)

τ = τ ′⌈β1 :: ξ1/α1 :: ξ1, . . . , βn :: ξn/αn :: ξn⌉

For all the substitutions in this section, it should be noted that any construc-
tors (i.e. ConsType) occuring nested within τ ′ may not have its type parameters
substituted. It is because that these are just for naming the parameters of the
constructors. This is also why they are called a rather than α. We didn’t sub-
stitute them in the above descriptions of constructor types either. They are
used to give CeXL the feature Named Type Parameters.
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15.3 Non-expansive Expressions

In order to treat polymorphic references and exceptions, the class of ξ-Calculus
expressions is partitioned in to two classes, the expansive and the non-expansive
expressions. An expression is non-expansive if it can be generated by the fol-
lowing grammar from the non-terminal ne:

(non-expansive) ne ::= λx.e | ce ne | x | ne : τ | c : σ | c ex τ | scon |
{ } | {lab1 = ne1, . . . , labm = nem, ne} |
ne1 ? ne2

(constructor exp) ce ::= ce : τ | c : σ | c ex τ

Restriction: Within a ce we require that c 6= ref.
Notice that e in the body of the λ construct may be any expression.

All other expressions are said to be expansive. The idea is that the dynamic
evaluation of a non-expansive expression will not extend the domain of the
memory, while the evaluation of an expansive expression might.

15.4 Scope of Explicit Type Variables

In CeXL, a type or datatype binding can explicitly introduce type variables
whose scope is that binding. The val bindings also bind type variables. The
binding of type variables in val bindings is handled by the semantics of ξ-
Calculus. In ξ-Calculus consider the part p1 = e1 ; · · · ; pn = en of a let or a
letrec expression. We call such a part a value binding since it comes from a val

binding in CeXL. It is for these value bindings that type variables are bound in
ξ-Calculus.

The binding of type variables in value bindings happen by the occurrences
of explicit free type variables in the ”: τ” of a typed expression or pattern or in
the ”τ” of an ex or a letex construct or in the ”α” or the ”τ” of a fieldcase
construct. The type parameters a1, . . . , an found in ConsType and TyPat do
not count here - since they are really just to be considered as parameter names
for constructor types. For the rest of this section we consider only the free
occurrences of type variables in the places just stated.

Every occurrence of a let or letrec expression is said to scope a set of explicit
type variables determined as follows.

First, a free occurrence of α in a value binding p1 = e1 ; · · · ; pn = en is
said to be unguarded if the occurrence is not part of a smaller value binding p′

1

= e ′
1 ; · · · ; p′

m = e ′
m of a let or letrec expression within the expressions e1,

. . ., en. In this case we say that α occurs unguarded in the value binding p1 =
e1 ; · · · ; pn = en.

Then we say that α is implicitly scoped at a particular value binding in a
program if (1) α occurs unguarded in this value binding, and (2) α does not
occur unguarded in any larger value binding containing the given one.

In section 16.3 we will see the rules for traversing a ξ-Calculus program to
infer the implicitly scoped type variables for a value binding. They are used in
the inference rules for expressions in the let and letrec constructs. All occurences
of type variables must have the same restrictions everywhere in the scope of their
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bindings. This is also ensured by the inference rules presented in section 16.3.
Thus for example in the two declarations:

let v = let id : α :: ◦ → α :: ◦ = λx.x in (λy.{})(id id)
in {}

let v = (λy. (λx.(x : α :: ◦)))
( let id : α :: ◦ → α :: ◦ = λx.x in (λy.{})(id id) )

in {}

the type variable α is scoped differently. In the first example α is implicitly
scoped at the binding of id. In the second example α is implicitly scoped at the
outer binding of v.

Then, according to the inference rules the first example can be elaborated,
but the second cannot since α is bound at the outer declaration leaving no
possibility of two different instantiations of the type of id in the application
id id. Section 25.2 of Appendix A has more example programs of legal and
illegal scoping of variables.

15.5 Closure

Let τ be a type and A a semantic object. Then ClosA(τ), the closure of τ
with respect to A, is the type scheme σ = ∀[α1 :: ξ1, . . . , αn :: ξn].τ where
α1 :: ξ1, . . . , αn :: ξn = tyvars τ\tyvars A. Commonly A will be an environment
∆ of type variables. We abbreviate the total closure Clos{}(τ) to Clos(τ). If
the range of a value environment Γ (as defined for the inference rules in section
16) contains only types (rather than arbitrary type schemes) we set

ClosA(Γ) = {x 7→ ClosA(τ) | Γ(x) = τ}

Closing a value environment Γ that stems from the elaboration of a value
binding p1 = e1 ; · · · ; pn = en requires extra care to ensure type safety of
references and exceptions, correct scoping of explicit type variables and correct
choice of implicitly inferred type variables. Assume that ∆ is the environment of
type variables which have been implicitly scoped by outer value bindings. The
closure is taken with respect to ∆. Assume that ∆′ is the inferred environment
of type variables which are implicitly scoped at the value binding. Assume that
Γ′ is the variable environment from outside the value binding. The value binding
is not allowed to bind the same variable twice, which is ensured by syntactical
constraints. Thus for each x ∈ Dom Γ there is a unique pi = ei in the value
binding which binds x. If Γ(x) = τ , then let

Clos∆,∆′,Γ′,p1=e1;··· ;pn=enΓ(x) = ∀[α1 :: ξ1, . . . , αn :: ξn].τ , where

[α1 :: ξ1, . . . , αn :: ξn] =

{

[tyvars τ\ tyvars ∆] , if e is non-expansive

[ ] , if e is expansive

During closure, some type variables are implicitly inferred. These are the
type variables which result from free types, which are represented as unbound
meta variables in the type system. Such type variables for τ must be chosen to
be fresh variables outside the set
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tyvars p1 ∪ tyvars e1 ∪ · · · ∪ tyvars pn ∪ tyvars en ∪ tyvars ∆.

Then we have

tyvars τ ∩ ((tyvars pi ∪ tyvars ei)\tyvars ∆′) = ∅

after closure. This way of chosing type variables will avoid capturing type
variables which occur unguarded in any value bindings of nested let or letrec
expressions. The program ”Legal Test 2” in section 25.2 of Appendix A is an
example of a program which must elaborate without problems.

We always require principal types at top-level4 value bindings and to be sure
to find a valid typing of programs if one exists, we must always find the most
general unifier of all types during closure. This is done by instantiating unbound
meta variables to type variables according to these rules:

• No meta variables are instantiated with type variables in the types of
bound variables for expansive expressions.

• If the closure is taken in a top-level let or letrec, all unbound meta variables
must be instantiated with type variables.

• As many meta variables as possible must be instantiated with type vari-
ables in the types of bound variables for non-expansive expressions. This
will always exclude the meta variables occuring in the sorrounding envi-
ronment Γ′.

Note that the first 2 of the 3 rules taken together imply that declaration of
polymorphic variables resulting from expansive expressions will fail at top-level.
The programs ”Illegal Test 1” and ”Illegal Test 2” in section 25.3 of Appendix
A are examples of programs which must be rejected.

15.6 Tidying Up During Closure

When we take the closure, we need to tidy up the type being closed to avoid
ending up with silly types. It is also described here what really happens with
the meta variables used in the unification algorithm. What we have to do is the
following:

• Replace unbound meta variables β :: ξ, where the restriction ξ represents
a single concrete type, by the type that the ξ represents. For instance, β ::
[]int{· · · } should be instantiated to []int{· · · }. This happens in restrictions
of the form ψ/m whenever there is only one ψ. Converting this to a type
amounts to recursively traversing the constructor types of ψ and replacing
them with types consisting of the same constructor types.

• It is also possible for all record types occurring in the inferred type to be
flattened into a single record type, rather than a list of smaller records -
but it is not necessary. Whether this would give more efficiency or not will
most likely depend on the implementation. The only requirement is, that
records must be displayed to the user as flattened records, so the easiest
would definitely be to do it at this point.

4What we call top-level here is the outermost sequence of let, letrec and letex expressions
in ξ-Calculus
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• In all record types, all record fields which are bound to types of the form
[]absent{absent} ? τ must be removed from the record types after the
closure operation in types for non-function and non-reference values. This
avoids some vacant limitations on extensions of record types, since we
are doing strict extension of records. It actually also avoids some weird
behaviour in the type system of the language, as we saw in the example
in section 3.13.

The reason for not just removing absent fields immediately during infer-
ence can be seen in the justification for the claim in section 7.1. Also,
removing absent fields for function values or reference values may be un-
sound

• Unbound meta variables are bound to fresh type variables according to
the rules of the previous section and all bound meta variables are replaced
with what they are bound to.

15.7 Predefined Constructors and Type Schemes

In the semantics of ξ-Calculus, we rely on the following constructor types (Con-
sType) to be predefined:

[]absent{absent} signifies an absent record field
[]present{present} signifies a present record field
[a = ·]ref{ref} special constructor for supporting references
[]exn{} special constructor only for exceptions

We also rely on the following type schemes (TyScheme) to be predefined:

σabs = ∀[].[]absent{absent} for constructor for absent record field
σpre = ∀[].[]present{present} for constructor for present record field
σref = ∀[α :: ◦].α :: ◦ → [a = α :: ◦]ref{ref} for constructor for references
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16 Type Inference for ξ-Calculus

16.1 Judgement Forms

Essential Judgements

Γ; ∆ ⊢ e ⇒ τ Infer type of e in environment Γ
Γ; ∆ ⊢ p ⇒ τ ; Γ′ Infer type of p in Γ and produce new Γ′

Well-formedness of Restrictions and Type Specifications

⊢ ξ Check that the restriction ξ is well-formed
! ψ1 = · · · = ψm ! Check that all type patterns ψi are mutually disjoint
ψ1 = ψ2 Check that a pair of type patterns ψ1 and ψ2 are disjoint
∆ ⊢tspec τ Verify that τ is a valid type specification with

restrictions on type variables as given in ∆
assuming that the restrictions in ∆ are already well-formed

∆;ω ⊢tspecrec τ Verify that τ is a valid record type specification
without any of the fields in ω and with
restrictions on type variables as given in ∆
assuming that the restrictions in ∆ are already well-formed

∆ ⊢tspecopt τ Verify that τ is a valid type specification
for an optional record field and with
restrictions on type variables as given in ∆
assuming that the restrictions in ∆ are already well-formed

Rules for Implicitly Scoped Type Variables

∆ ◮ p1 = e1 ; · · · ; Infer the implicitly scoped type variables
pn = en ⇒ ∆′ from the value binding part of a let or a letrec expression

where ∆ is already scoped at that value binding
∆ ◮ e ⇒ ∆′ Infer the implicitly scoped type variables

from e where ∆ is scoped in the enclosing value binding
∆ ◮ p ⇒ ∆′ Infer the implicitly scoped type variables

from p where ∆ is scoped in the enclosing value binding
∆ ◮tspec τ ⇒ ∆′ Infer the implicitly scoped type variables

of τ where ∆ is scoped in the enclosing value binding
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16.2 Inference Rules

Expressions

Γ; ∆ ⊢ e ⇒ τ

Γ + {x 7→ τ}; ∆ ⊢ e ⇒ τ ′

Γ; ∆ ⊢ λx.e ⇒ τ → τ ′
(46)

Γ; ∆ ⊢ e1 ⇒ τ → τ ′ Γ; ∆ ⊢ e2 ⇒ τ
Γ; ∆ ⊢ e1e2 ⇒ τ ′

(47)

x ∈ Dom Γ σ = Γ(x) σ ≻ τ

Γ; ∆ ⊢ x ⇒ τ
(48)

Γ; ∆ ⊢ e⇒ τ ∆ ⊢tspec τ

Γ; ∆ ⊢ e : τ ⇒ τ
(49)

σ ≻ τ

Γ; ∆ ⊢ c : σ ⇒ τ
(50)

Γ; ∆ ⊢ c ex τ ⇒ τ
(51)

Γ; ∆ ⊢ scon ⇒ type(scon)
(52)

Γ; ∆ ⊢ {} ⇒ {}
(53)

lab1, . . . , labm are all distinct m ≥ 1
∀i ∈ {1, . . . ,m} : Γ; ∆ ⊢ ei ⇒ τi ? τ ′i

∀i ∈ {1, . . . ,m} : ξi = []absent{absent} / []present{present}
∀i ∈ {1, . . . ,m} : τi|ξi

ω = {lab1, . . . , labm} τ |ω Γ; ∆ ⊢ e ⇒ τ
Γ; ∆ ⊢ {lab1=e1, . . . ,labm=em,e} ⇒ {lab1 : τ1 ? τ ′1, . . . , labm : τm ? τ ′m; τ}

(54)

Γ; ∆ ⊢ e1 ⇒ τ1 Γ; ∆ ⊢ e2 ⇒ τ2
ξ = []absent{absent} / []present{present} τ1|ξ

Γ; ∆ ⊢ e1 ? e2 ⇒ τ1 ? τ2

(55)

∀i ∈ {1, . . . ,m} : ∆ ⊢tspec τi Γ; ∆ ⊢ e ⇒ τ ′ m ≥ 1
Γ; ∆ ⊢ letex c1 : τ1, . . . , cm : τm in e ⇒ τ ′

(56)
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∆ ◮ p1 = e1 ; · · · ; pn = en ⇒ ∆′ n ≥ 0
{}; ∆ + ∆′ ⊢ p1 ⇒ τ1; Γ1 Γ; ∆ + ∆′ ⊢ e1 ⇒ τ1
Γ1; ∆ + ∆′ ⊢ p2 ⇒ τ2; Γ2 Γ; ∆ + ∆′ ⊢ e2 ⇒ τ2

...
Γn−1; ∆ + ∆′ ⊢ pn ⇒ τn; Γn Γ; ∆ + ∆′ ⊢ en ⇒ τn

p1, . . . , pn together may not bind the same variable x more than once
∀i ∈ {1, . . . , n} : pi is exhaustive on τi

Γ′
n = Clos∆,∆′,Γ,p1=e1;··· ;pn=en Γn

Γ + Γ′
n; ∆ ⊢ e ⇒ τ

Γ; ∆ ⊢ let p1 = e1 ; · · · ; pn = en in e ⇒ τ
(57)

∆ ◮ p1 = e1 ; · · · ; pm = em ⇒ ∆′ m ≥ 1
{}; ∆ + ∆′ ⊢ p1 ⇒ τ1; Γ1 Γ + Γm; ∆ + ∆′ ⊢ e1 ⇒ τ1
Γ1; ∆ + ∆′ ⊢ p2 ⇒ τ2; Γ2 Γ + Γm; ∆ + ∆′ ⊢ e2 ⇒ τ2

...
Γm−1; ∆ + ∆′ ⊢ pm ⇒ τm; Γm Γ + Γm; ∆ + ∆′ ⊢ em ⇒ τm

p1, . . . , pm together may not bind the same variable x more than once
∀i ∈ {1, . . . ,m} : pi is exhaustive on τi
Γ′
m = Clos∆,∆′,Γ,p1=e1;··· ;pm=em Γm

Γ + Γ′
m; ∆ ⊢ e ⇒ τ

Γ; ∆ ⊢ letrec p1 = e1 ; · · · ; pm = em in e ⇒ τ
(58)

Γ; ∆ ⊢ e ⇒ τ m ≥ 1
Γ; ∆ ⊢ p1 ⇒ τ ; Γ1 Γ1; ∆ ⊢ e1 ⇒ τ ′

...
Γ; ∆ ⊢ pm ⇒ τ ; Γm Γm; ∆ ⊢ em ⇒ τ ′

∀i ∈ {1, . . . ,m} : each variable x in pi occurs only once
A warning must be issued if p1, . . . , pm are not exhaustive on τ

p1, . . . , pm may not be redundant on τ
Γ; ∆ ⊢ case e of p1 ⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ τ ′

(59)

α ∈ Dom ∆ ξ = ∆(α)
ξ = []absent{absent} / []present{present}

Γ; ∆ ⊢ e ⇒ α :: ξ ? τ ′

Γ; ∆ ⊢ p ⇒ τ ′; Γ′ ∆ ⊢tspec τ
each variable x in p occurs only once p is exhaustive on τ ′

Γ; ∆ ⊢ e1 ⇒ τ⌈ []absent{absent} / α :: ξ ⌉
Γ′; ∆ ⊢ e2 ⇒ τ⌈ []present{present} / α :: ξ ⌉

Γ; ∆ ⊢ fieldcase e in α of absent ⇉ e1 ‖ p ⇉ e2 type τ ⇒ τ

(60)
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m ≥ 1 Γ; ∆ ⊢ e ⇒ τ
Γ; ∆ ⊢ p1 ⇒ []exn{}; Γ1 Γ1; ∆ ⊢ e1 ⇒ τ

...
Γ; ∆ ⊢ pm ⇒ []exn{}; Γm Γm; ∆ ⊢ em ⇒ τ

∀i ∈ {1, . . . ,m} : each variable x in pi occurs only once
p1, . . . , pm may not be redundant on []exn{}

Γ; ∆ ⊢ e handle p1 ⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ τ

(61)

Γ; ∆ ⊢ e ⇒ []exn{}

Γ; ∆ ⊢ raise e ⇒ τ
(62)

Comments on Static Semantics of Expressions

• Rules (48) and (50): The instantiation of type schemes allows different
occurrences of a single variable x or constructor c to assume different
types.

• Rule (49) and (60): τ must indicate the degrees of freedom exactly by
using type variables. The restrictions on these type variables are given by
the environment ∆.

• Rule (51): τ will have one of the 2 forms []exn{} or τ ′ → []exn{} which is
ensured by the Naked CeXL to ξ-Calculus translation.

• Rule (53): Giving the empty record the type {} means that it will unify
only with record types containing absent fields and ending in {}.

• Rule (54): Notice that m can not be zero - thus the empty extensible
record cannot be expressed as an expression, but only as type restrictions.
The premise τ |ω is part of what asserts that all record field names in any
record type being inferred are distinct.

• Rule (56): For soundness we need exception declarations both to ensure
correct scoping of type variables and to be able to allocate exception names
dynamically. When type variables are allowed in exception types we would
get problems if exception names were not allocated dynamically. See the
regression test in section 25.4 for an example of this. We could have
avoided exception declarations in ξ-Calculus and dynamic exception name
allocation by disallowing type variables in exceptions.

• Rules (57) and (58): The premise tyvars Γ′
m \ tyvars ∆ = ∅ ensures that

type variables occuring free in the range of Γm are bound by the closure
operation, unless they are already scoped by an outer let or letrec binding.
The type variables scoped by an outer let or letrec are those in ∆.

• Rules (58): From the inference of all the pi we see that any type scheme
occuring in Γm will have to be a type so any use of a recursive function
in its own body must be assigned the same type.

• Rule (60): The notation inside ⌈ ⌉ is the usual notation for substitution
(i.e. β-conversion).

• Rule (62): Note that τ does not occur in the premise, so a raise expression
has ”arbitrary” type.
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Patterns

Γ; ∆ ⊢ p ⇒ τ ; Γ′

Γ; ∆ ⊢ x ⇒ τ ; Γ + {x 7→ τ}
(63)

Γ; ∆ ⊢ p ⇒ τ ; Γ′

Γ; ∆ ⊢ x as p ⇒ τ ; Γ′ + {x 7→ τ}
(64)

∆ ⊢tspec τ Γ; ∆ ⊢ p ⇒ τ ; Γ′

Γ; ∆ ⊢ p : τ ⇒ τ ; Γ′
(65)

σ ≻ τ

Γ; ∆ ⊢ c : σ ⇒ τ ; Γ
(66)

σ ≻ τ ′ → τ Γ; ∆ ⊢ p ⇒ τ ′; Γ′

Γ; ∆ ⊢ c(p) : σ ⇒ τ ; Γ′
(67)

Γ; ∆ ⊢ c ex ⇒ []exn{}; Γ
(68)

Γ; ∆ ⊢ p ⇒ τ ; Γ′

Γ; ∆ ⊢ c(p) ex τ ⇒ []exn{}; Γ′
(69)

Γ; ∆ ⊢ scon ⇒ type(scon); Γ
(70)

Γ; ∆ ⊢ ⇒ τ ; Γ
(71)

Γ; ∆ ⊢ {} ⇒ {}; Γ
(72)

lab1, . . . , labm are all distinct m ≥ 1
∀i ∈ {1, . . . ,m} : Γi; ∆ ⊢ pi ⇒ τi ? τ ′i ; Γi+1

∀i ∈ {1, . . . ,m} : ξi = []absent{absent} / []present{present}
∀i ∈ {1, . . . ,m} : τi|ξi

ω = {lab1, . . . , labm} τ |ω Γm+1; ∆ ⊢ p ⇒ τ ; Γm+2

Γ1; ∆ ⊢ {lab1=e1, . . . ,labm=em,e} ⇒ {lab1 : τ1 ? τ ′1, . . . , labm : τm ? τ ′m; τ}; Γm+2

(73)

Γ; ∆ ⊢ p ⇒ τ ; Γ′

Γ; ∆ ⊢ present : σpre ? p ⇒ []present{present} ? τ ; Γ′
(74)
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Comments on Static Semantics of Patterns

• Rule (65): τ must indicate the degrees of freedom exactly by using type
variables. The restrictions on these type variables are given by the envi-
ronment ∆.

• Rule (66): σ must have the form ∀[α1 :: ξ1, . . . , αn :: ξn].[a1 = α1 ::
ξ1, . . . , an = αn :: ξn]d{c1, . . . , ck} which is esured during Naked CeXL to
ξ-calculus translation.

• Rule (67): σ must have the form ∀[α1 :: ξ1, . . . , αn :: ξn].τ
′ → [a1 = α1 ::

ξ1, . . . , an = αn :: ξn]d{c1, . . . , ck} which is esured during Naked CeXL to
ξ-calculus translation.

• Rules (66) and (67): The instantiation of type schemes allows different
occurrences of a single constructor c to assume different types.

• Rule (74): The pattern-matching construct p1 ? p2 can only be used with
the constructor present of type []present{present}. This constructor type
has the predefined type scheme σpre which was described in section 15.7.

83



Well-formed Restrictions

⊢ ξ

⊢ ◦
(75)

⊢ ω
(76)

m ≥ 1
! ψ1 = · · · = ψm !
ψ1 / · · · / ψm

(77)

Mutually Disjoint Type Patterns

! ψ1 = · · · = ψm !

∀i, j ∈ {1, . . . ,m}, i 6= j : ψi = ψj m ≥ 1

! ψ1 = · · · = ψm !
(78)

Disjoint Type Patterns

ψ1 = ψ2

d 6= d′ n, k, q, z ≥ 0 d, d′ 6= exn

[a1 = ψ1, . . . , an = ψn]d{c1, . . . , cq} = [a′1 = ψ′
1, . . . , a

′
k = ψ′

k]d
′{c′1, . . . , c

′
z}
(79)

∃i ∈ {1, . . . , n} : ψi = ψ′
i n, q ≥ 0 d 6= exn

[a1 = ψ1, . . . , an = ψn]d{c1, . . . , cq} = [a1 = ψ′
1, . . . , an = ψ′

n]d{c1, . . . , cq}
(80)

Comments

• Rule (80): We can use the ∃ quantor to compare the pairs of ψi with ψ′
i

without problems here because the relation = does not do any unification.
It basically just checks for equality (actually non-equality).
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Type Specification

∆ ⊢tspec τ

β ∈ Dom env τ = env(β) ∆ ⊢tspec τ
∆ ⊢tspec β :: ξ

(81)

β /∈ Dom env
∆ ⊢tspec β :: ξ

(82)

α ∈ Dom ∆ ξ = ∆(α)
∆ ⊢tspec α :: ξ

(83)

∆ ⊢tspec τ ∆ ⊢tspec τ ′

∆ ⊢tspec τ → τ ′
(84)

∀i ∈ {1, . . . , n} : ∆ ⊢tspec τi n, k ≥ 0

∆ ⊢tspec [a1 = τ1, . . . , an = τn]d{c1, . . . , ck}
(85)

∆ ⊢tspecopt τ ∆ ⊢tspec τ ′

∆ ⊢tspec τ ? τ ′
(86)

∆ ⊢tspec {}
(87)

lab1, . . . , labm distinct m ≥ 1
∀i ∈ {1, . . . ,m} : ∆ ⊢tspecopt τi
∀i ∈ {1, . . . ,m} : ∆ ⊢tspec τ ′i

∆; {lab1, . . . , labm} ⊢tspecendrec τ
∆ ⊢tspec {lab1 : τ1 ? τ ′1, . . . , labm : τm ? τ ′m; τ}

(88)

Record End Type Specifications

∆;ω ⊢tspecrec τ

β ∈ Dom env τ = env(β) ∆;ω ⊢tspecrec τ
∆;ω ⊢tspecrec β :: ξ

(89)

β /∈ Dom env ξ ≫ ω
∆;ω ⊢tspecrec β :: ξ

(90)

β /∈ Dom env β′fresh
ω ≫ ξ ξ 6= ω

∆;ω ⊢tspecrec β :: ξ
bind(env, β 7→ β′ :: ω)

(91)

α ∈ Dom ∆ ξ = ∆(α) ξ ≫ ω
∆;ω ⊢tspecrec α :: ξ

(92)

∆;ω ⊢tspecrec {}
(93)
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lab1, . . . , labm distinct m ≥ 1
ω ∩ {lab1, . . . , labm} = ∅ ω′ = ω ∪ {lab1, . . . , labm}

∀i ∈ {1, . . . ,m} : ∆ ⊢tspecopt τi
∀i ∈ {1, . . . ,m} : ∆ ⊢tspec τ ′i

∆;ω′ ⊢tspecendrec τ
∆;ω ⊢tspec {lab1 : τ1 ? τ ′1, . . . , labm : τm ? τ ′m; τ}

(94)

Optional Field Type Specifications

∆ ⊢tspecopt τ

β ∈ Dom env τ = env(β) ∆ ⊢tspecopt τ
∆ ⊢tspecopt β :: ξ

(95)

β /∈ Dom env
ξ ≫ []absent{absent} / []present{present}

∆ ⊢tspecopt β :: ξ
(96)

β /∈ Dom env β′fresh
[]absent{absent} / []present{present} ≫ ξ
[]absent{absent} / []present{present} 6= ξ

∆ ⊢tspecopt β :: ξ
bind(env, β 7→ β′ :: []absent{absent} / []present{present})

(97)

α ∈ Dom ∆ ξ = ∆(α)
ξ ≫ []absent{absent} / []present{present}

∆ ⊢tspecopt α :: ξ
(98)

∆ ⊢tspecopt []absent{absent} (99)

∆ ⊢tspecopt []present{present} (100)

Comments on Type Specifications

• Rules (81)-(100): These rules check that record types in type specifications
are well-formed and that all type variables occuring in the type have the
same restrictions as specified in the environment of type variables. All type
variables must have their restrictions specified explicitly. An occurrence
of a type variable also explicitly indicates the degree of freedom in a type,
since a type variable can never be bound to a type.

• Rules (81), (82), (89), (90), (91), (95), (96) and (97): Meta variables are
explicitly handled in type specifications. This is actually part of how a
unification algorithm for ξ-Calculus is implemented and it can be consid-
ered quite a ”hack” in the semantics. It is necessary to support the feature
Partial Type Instantiation. An alternative would be to move the semantics
of declared types into ξ-Calculus, but that would take away the simplicity
of ξ-Calculus. Another alternative is to check the well-formedness of types
during the translation from Naked CeXL, which might be a prettier way
than this, since we already need to check declarations at that time.
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In these rules, env refers to the environment of meta variables used in the
unification relation of section 14. Relations like ξ ≫ ω are also from that
section.

• Rule (85): The constructor []exn{} is allowed in type specifications which
is why we have k ≥ 0 rather than k ≥ 1.

• Rule (94): This rule will not be used if the type specifications in the rules
(49), (56), (60) and (65) are checked before any other unification is done
in those 3 rules. This is because, that the translation from Naked CeXL
to ξ-Calculus will never generate type specifications of this form directly.
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16.3 Rules for Implicitly Scoped Type Variables

The following are the inference rules for implicitly scoped type variables. For
these inference rules, we will define an operator ⊎ for combining two environ-
ments ∆ and ∆′ of type variables in a certain way.

16.3.1 The ⊎ Operator

We define ⊎ as follows. Using the ⊎ operator on two environments ∆ and ∆′ of
type variables, will make a new environment ∆′′, where Dom ∆′′ = Dom ∆ ∪
Dom ∆′. However, the ⊎ operation must fail, if for some α we have ξ = ∆(α),
ξ′ = ∆′(α) and ξ 6= ξ′. If ⊎ fails, it means that the ξ-Calculus program (and thus
also the CeXL program it comes from) is invalid due to conflicting restrictions
on the same type variable, and this must be reported to the user as an error. If
⊎ succeeds, the resulting ∆′′ is given by ∆′′ = ∆ ∪ ∆′, which is equivalent to
when we write ∆′′ = ∆ + ∆′.

Inference Rules

∆ ◮ p1 = e1 ; · · · ; pn = en ⇒ ∆′

n ≥ 0
∀i ∈ {1, . . . , n} : ∆ ◮ pi ⇒ ∆i

∀i ∈ {1, . . . , n} : ∆ ◮ ei ⇒ ∆′
i

∆′ = ∆1 ⊎ ∆′
1 ⊎ ∆2 ⊎ ∆′

2 ⊎ · · · ⊎ ∆n ⊎ ∆′
n

∆ ◮ p1 = e1 ; · · · ; pn = en ⇒ ∆′

(101)

∆ ◮ e ⇒ ∆′

∆ ◮ e ⇒ ∆′

∆ ◮ λx.e ⇒ ∆′
(102)

∆ ◮ e1 ⇒ ∆1 ∆ ◮ e2 ⇒ ∆2

∆ ◮ e1e2 ⇒ ∆1 ⊎ ∆2
(103)

∆ ◮ x ⇒ {}
(104)

∆ ◮ e ⇒ ∆1 ∆ ◮tspec τ ⇒ ∆2

∆ ◮ e : τ ⇒ ∆1 ⊎ ∆2
(105)

∆ ◮ c : σ ⇒ {}
(106)

∆ ◮tspec τ ⇒ ∆′

∆ ◮ c ex τ ⇒ ∆′
(107)

∆ ◮ scon ⇒ {}
(108)

∆ ◮ {} ⇒ {}
(109)
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∀i ∈ {1, . . . ,m} : ∆ ◮ ei ⇒ ∆i m ≥ 1 ∆ ◮ e ⇒ ∆′

∆ ◮ {lab1=e1, . . . ,labm=em,e} ⇒ ∆1 ⊎ · · · ⊎ ∆m ⊎ ∆′
(110)

∆ ◮ e1 ⇒ ∆1 ∆ ◮ e2 ⇒ ∆2

∆ ◮ e1 ? e2 ⇒ ∆1 ⊎ ∆2
(111)

∆ ◮ e ⇒ ∆′ n ≥ 0
∆ ◮ let p1 = e1 ; · · · ; pn = en in e ⇒ ∆′ (112)

∆ ◮ e ⇒ ∆′ m ≥ 1
∆ ◮ letrec p1 = e1 ; · · · ; pm = em in e ⇒ ∆′ (113)

∀i ∈ {1, . . . ,m} : ∆ ◮ pi ⇒ ∆i m ≥ 1
∀i ∈ {1, . . . ,m} : ∆ ◮ ei ⇒ ∆′

i ∆ ◮ e ⇒ ∆′

∆′′ = ∆1 ⊎ ∆′
1 ⊎ ∆2 ⊎ ∆′

2 ⊎ · · · ⊎ ∆m ⊎ ∆′
m ⊎ ∆′

∆ ◮ case e of p1 ⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ ∆′′

(114)

α ∈ Dom ∆ ξ = ∆(α)
ξ = []absent{absent} / []present{present}

∆ ◮ e ⇒ ∆1 ∆ ◮ e1 ⇒ ∆2

∆ ◮ p ⇒ ∆3 ∆ ◮ e2 ⇒ ∆4

∆ ◮tspec τ ⇒ ∆5

∆′ = ∆1 ⊎ ∆2 ⊎ ∆3 ⊎ ∆4 ⊎ ∆5

∆ ◮ fieldcase e in α of absent ⇉ e1 ‖ p ⇉ e2 type τ ⇒ ∆′

(115)

α /∈ Dom ∆
ξ = []absent{absent} / []present{present}

∆ ◮ e ⇒ ∆1 ∆ ◮ e1 ⇒ ∆2

∆ ◮ p ⇒ ∆3 ∆ ◮ e2 ⇒ ∆4

∆ ◮tspec τ ⇒ ∆5

∆′ = {α 7→ ξ} ⊎ ∆1 ⊎ ∆2 ⊎ ∆3 ⊎ ∆4 ⊎ ∆5

∆ ◮ fieldcase e in α of absent ⇉ e1 ‖ p ⇉ e2 type τ ⇒ ∆′

(116)

∀i ∈ {1, . . . ,m} : ∆ ◮tspec τi ⇒ ∆i ∆ ◮ e ⇒ ∆′ m ≥ 1

∆ ◮ letex c1 : τ1 , . . . , cm : τm in e ⇒ ∆1 ⊎ ∆2 ⊎ · · · ⊎ ∆m ⊎ ∆′
(117)

∀i ∈ {1, . . . ,m} : ∆ ◮ pi ⇒ ∆i m ≥ 1
∀i ∈ {1, . . . ,m} : ∆ ◮ ei ⇒ ∆′

i ∆ ◮ e ⇒ ∆′

∆′′ = ∆1 ⊎ ∆′
1 ⊎ ∆2 ⊎ ∆′

2 ⊎ · · · ⊎ ∆m ⊎ ∆′
m ⊎ ∆′

∆ ◮ e handle p1 ⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ ∆′′

(118)

∆ ◮ e ⇒ ∆′

∆ ◮ raise e ⇒ ∆′
(119)

∆ ◮ p ⇒ ∆′
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∆ ◮ x ⇒ {}
(120)

∆ ◮ p ⇒ ∆′

∆ ◮ x as p ⇒ ∆
(121)

∆ ◮ p ⇒ ∆1 ∆ ◮tspec τ ⇒ ∆2

∆ ◮ p : τ ⇒ ∆1 ⊎ ∆2
(122)

∆ ◮ c : σ ⇒ {}
(123)

∆ ◮ p ⇒ ∆′

∆ ◮ c(p) : σ ⇒ ∆′
(124)

∆ ◮ c ex ⇒ ∆
(125)

∆ ◮ p ⇒ ∆1 ∆ ◮tspec τ ⇒ ∆2

∆ ◮ c(p) ex τ ⇒ ∆1 ⊎ ∆2
(126)

∆ ◮ scon ⇒ {}
(127)

∆ ◮ ⇒ {}
(128)

∆ ◮ {} ⇒ {}
(129)

∀i ∈ {1, . . . ,m} : ∆ ◮ pi ⇒ ∆i m ≥ 1 ∆ ◮ p ⇒ ∆′

∆ ◮ {lab1=p1, . . . ,labm=pm,p} ⇒ ∆1 ⊎ · · · ⊎ ∆m ⊎ ∆′
(130)

∆ ◮ p ⇒ ∆′

∆ ◮ present : σpre ? p ⇒ ∆′
(131)
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∆ ◮tspec τ ⇒ ∆′

β /∈ Dom env
∆ ◮tspec β :: ξ ⇒ {}

(132)

β ∈ Dom env τ = env(β)
∆ ◮tspec τ ⇒ ∆′

∆ ◮tspec β :: ξ ⇒ ∆′
(133)

α ∈ Dom ∆ ξ = ∆(α)
∆ ◮tspec α :: ξ ⇒ {}

(134)

α /∈ Dom ∆
∆ ◮tspec α :: ξ ⇒ {α 7→ ξ}

(135)

∆ ◮tspec τ ⇒ ∆1 ∆ ◮tspec τ ′ ⇒ ∆2

∆ ◮tspec τ → τ ′ ⇒ ∆1 ⊎ ∆2
(136)

∆ ◮tspec τ ⇒ ∆1 ∆ ◮tspec τ ′ ⇒ ∆2

∆ ◮tspec τ ? τ ′ ⇒ ∆1 ⊎ ∆2
(137)

∀i ∈ {1, . . . , n} : ∆ ◮tspec τi ⇒ ∆i n, k ≥ 0

∆ ◮tspec [a1 = τ1, . . . , an = τn]d{c1, . . . , ck} ⇒ ∆1 ⊎ · · · ⊎ ∆n
(138)

∆ ◮tspec {} ⇒ []
(139)

∀i ∈ {1, . . . ,m} : ∆ ◮tspec τi ⇒ ∆i m ≥ 1 ∆ ◮tspec τ ⇒ ∆′

∆ ◮tspec {lab1 : τ1 ? τ ′1, . . . , labm : τm ? τ ′m; τ} ⇒ ∆1 ⊎ · · · ⊎ ∆n ⊎ ∆′

(140)
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Comments on Implicitly Scoped Type Variables

• Rule (101): This rule handles the value binding part of a let or letrec
expression. This is where the rules for scoped type variables are initiated
from.

• Rules (106), (123), (124) and (131): Constructor type schemes do not
scope any type variables because the constructors are always quantified as
closed types without any free type variables. This is ensured by the closure
operation of datatypes in the Naked CeXL to ξ-Calculus translation.

• Rules (112) and (113): Notice that it is exactly at the nested let and letrec
expressions that the scoping stops.

• Rules (115) and (116): Notice that there is no rule for when α is present
in ∆ with a different restriction than []absent{absent} / []present{present}
as this would be an error.

The way we handle the α here is similar to how α is handled in rules (134)
and (135) except that ξ must be []absent{absent} / []present{present}.

• Rule (134): Notice that both α and ξ must be the same.

• Rule (135): The α must not occur at all in ∆.

• Rules (134) and (135): Notice that there is no rule for when α is present
in ∆ with a different restriction than the specified one as this would be
an error.

• Rule (138): Notice that the variables a1, . . . , an are not scoped. As men-
tioned, these are not type variables but only parameter names for the
constructor type - even though they denote the same names as type vari-
ables do.

We allow the constructor []exn{} here, so k ≥ 0.
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17 Dynamic Semantics

This is the dynamic semantics which gives the runtime computational behaviour
of ξ-Calculus.

17.1 Semantic Objects for Values

Syntax Name Semantic Objects

{FAIL} ”Failure”

addr Addr ”Addresses”

sv SVal ”Special values”

bv BasVal ”Basic values”

c ConsId ”Constructor identifiers”

en ExName ”Exception Names”

v Val = {:=} ∪ SVal ∪ BasVal ∪ ConsVal ∪ ExVal ∪
FieldVal ∪ RecordVal ∪ Addr ∪ FcnClosure

k ConsVal = ConsId ∪ (ConsId × Val)

ex ExVal = ExName ∪ (ExName × Val)

[ex] or p Pack = ExVal

f FieldVal = ConsId × Val

r RecordVal = Lab fin

→
Val

(x, e, Γ, Γ′) FcnClosure = VId × Expression × ValEnv × ValEnv

mem Mem = Addr fin

→
Val

ens ExNameSet = Fin(ExName)

s State = Mem × ExNameSet

Γ ValEnv = VId fin

→
Val

17.2 Notes About the Semantic Objects

Exceptions are given names (ExName) dynamically at runtime. See the regres-
sion test in section 25.4 for an example where this is necessary. The class Pack
is used for exceptions which have been raised, so they have a different semantic
significance than ExVal.
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17.3 Primitive Functions: BasVal and APPLY

BasVal represents primitive functions in ξ-Calculus. We represent execution of
such a function with the semantic function:

APPLY : BasV al× V al → V al ∪ Pack

17.4 Predefined Semantic Objects

The following constructor identifiers (ConsId) must be predeclared:

ref absent present

The following exception names (ExName) must be predeclared:

Match Bind

We don’t use Bind but we reserve it, to allow scaling CeXL up to the full
Standard ML ’97 feature set.

17.5 Function Closures

The informal understanding of a function closure (x, e,Γ,Γ′) is as follows: When
the function closure is applied to a value v, e will be evaluated in the environ-
ment Γ modified in a special sense by Γ′ and with the binding x 7→ v added.
The domain Dom Γ′ contains those identifiers to be treated recursively in the
evaluation. To achieve this effect, the evaluation of e will take place not in
Γ + Γ′ + {x 7→ v} but in Γ +Rec Γ′ + {x 7→ v} where Rec : ValEnv → ValEnv
is defined as follows:

• Dom(Rec Γ) = Dom(Γ)

• If Γ(x ) /∈ FcnClosure, then (Rec Γ(x )) = Γ(x )

• If Γ(x ) = (x ’, e, Γ′, Γ′′), then (Rec Γ(x )) = (x ’, e, Γ′, Γ)

The effect is that, before application of (x, e,Γ,Γ′) to v, the function closures
in Ran Γ are ”unrolled” once, to prepare for their possible recursive application
during the evaluation of e.

This device is adopted to ensure that all semantic objects are finite (by
controlling the unrolling of recursion). The operator Rec is invoked in just two
places in the semantic rules: In the rule for letrec and in the rule for evaluating
an application expression exp atexp in the case that exp evaluates to a function
closure.

17.6 Conventions for the Inferences Rules

The semantic rules allow sentences of the form

s;A ⊢ phrase ⇒ A′; s′

to be inferred, where A is usually an environment, A′ is some semantic
object and s, s′ are the states before and after the evaluation represented by
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the sentence. Some hypotheses in rules are not of this form; they are called
side-conditions.

In most rules the states s and s′ are omitted from the sentences; they are
only included for those rules which are directly concerned with the state - ei-
ther referring to its contents or changing it. When omitted, the convention for
restoring them is as follows. If the rule is presented in the form

A1 ⊢ phrase1 ⇒ A′
1 A2 ⊢ phrase2 ⇒ A′

2 · · ·
· · · An ⊢ phrasen ⇒ A′

n

A ⊢ phrase ⇒ A′

then the full form is intended to be

s0;A1 ⊢ phrase1 ⇒ A′
1; s1 s1;A2 ⊢ phrase2 ⇒ A′

2; s2 · · ·
· · · sn−1;An ⊢ phrasen ⇒ A′

n; sn
s0;A ⊢ phrase ⇒ A′; sn

(Any side-conditions are left unaltered). Thus the left-to-right order of the
hypotheses indicate the order of evaluation. Note that in the case n = 0, when
there are no hypotheses (except possibly side-conditions), we have s0 = sn; this
implies that the rule causes no side effect. The convention is called the state-
convention, and must be applied to each version of a rule obtained by inclusion
or omission of its options.

A second convention, the exception convention, is adopted to deal with the
propagation of exception packets p. For each rule whose full form (ignoring side
conditions) is

s1;A1 ⊢ phrase1 ⇒ A′
1; s

′
1 · · · sn;An ⊢ phrasen ⇒ A′

n; s
′
n

s1;A1 ⊢ phrase ⇒ A′; s′

and for each k where 1 ≤ k ≤ n, for which the result A′
k is not a packet p,

an extra rule is added of the form

s1;A1 ⊢ phrase1 ⇒ A′
1; s

′
1 · · · sk;Ak ⊢ phrasek ⇒ p′; s′

s1;A1 ⊢ phrase ⇒ p′; s′

where p′ does not occur in the original rule. There is one exception to the
exception convention though. No extra rule is added for rule (163) which deals
with exception handling, since an exception handler is the only means by which
propagation of an exception can be arrested.

The exception convention indicates that evaluation of phrases in the hypoth-
esis terminates with the first phrase whose result is a packet (other than one
already treated in the rule), and this packet is the result of the phrase in the
conclusion.

A third convention is that we allow compound variables (variables built from
the variables used to represent semantic objects and the symbol ”/”) to range
over unions of semantic objects. For instance the compound variable v/p ranges
over Val ∪ Pack. We also allow x/FAIL to range over X ∪ {FAIL} where x
ranges over X .
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17.7 Judgement Forms

s; Γ ⊢ e ⇒ v; s′ Evaluate value v of expression e in environments Γ
s; Γ; v ⊢ p ⇒ Γ′/FAIL; s′ Match pattern p against the value v and

produce environment Γ′ or return FAIL
s; r ⊢# lab ⇒ v; r′; s′ Extract value v at label lab from record r and

produce record r ’ with the field lab removed

17.8 Inference Rules

Expressions

Γ ⊢ e ⇒ v

Γ ⊢ λx.e ⇒ (x, e,Γ, {})
(141)

Γ ⊢ e1 ⇒ (x, e,Γ′,Γ′′) Γ ⊢ e2 ⇒ v
Γ′ +Rec Γ′′ + {x 7→ v} ⊢ e ⇒ v′

Γ ⊢ e1 e2 ⇒ v′
(142)

Γ ⊢ e1 ⇒ c Γ ⊢ e2 ⇒ v c 6= ref
Γ ⊢ e1 e2 ⇒ (c, v)

(143)

Γ ⊢ e1 ⇒ en Γ ⊢ e2 ⇒ v
Γ ⊢ e1 e2 ⇒ (en, v)

(144)

Γ ⊢ e1 ⇒ bv Γ ⊢ e2 ⇒ v APPLY(bv, v) = v ’/p
Γ ⊢ e1 e2 ⇒ v′/p

(145)

s; Γ ⊢ e1 ⇒ ref; s′ s′; Γ ⊢ e2 ⇒ v; s′′

s′′ = (mem, ens) addr /∈ Dom mem
s; Γ ⊢ e1 e2 ⇒ addr; (mem + {addr 7→ v}, ens)

(146)

s; Γ ⊢ e1 ⇒ :=; s′ s′; Γ ⊢ e2 ⇒ {1 7→ addr, 2 7→ v}; s′′

s′′ = (mem, ens)
s; Γ ⊢ e1 e2 ⇒ {}; (mem + {addr 7→ v}, ens)

(147)

x ∈ Dom Γ v = Γ(x)

Γ ⊢ x ⇒ v
(148)

Γ ⊢ e ⇒ v

Γ ⊢ e : τ ⇒ v
(149)

Γ ⊢ c : σ ⇒ c
(150)

Γ(c) = en

Γ ⊢ c ex τ ⇒ en
(151)

Γ ⊢ scon ⇒ val(scon)
(152)

Γ ⊢ {} ⇒ {}
(153)
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∀i ∈ {1, . . . ,m} : Γ ⊢ ei ⇒ vi Γ ⊢ e ⇒ r
{v′i1 , . . . , v

′
in
} = {v′i | vi = (present, v′i)}

Γ ⊢ {lab1 = e1, . . . , labm = em, e} ⇒ {labi1 7→ v′i1 , . . . , labin 7→ v′in} + r
(154)

Γ ⊢ e1 ⇒ c Γ ⊢ e2 ⇒ v f = (c, v)

Γ ⊢ e1 ? e2 ⇒ f
(155)

Γ ⊢ e1 ⇒ v1 Γ; v1 ⊢ p1 ⇒ Γ1

Γ ⊢ e2 ⇒ v2 Γ; v2 ⊢ p2 ⇒ Γ2

...
Γ ⊢ en ⇒ vn Γ; vn ⊢ pn ⇒ Γn

Γ + Γ1 + · · · + Γn ⊢ e ⇒ v
Γ ⊢ let p1 = e1 ; · · · ; pn = en in e ⇒ v

(156)

Γ ⊢ e1 ⇒ v1 Γ; v1 ⊢ p1 ⇒ Γ1

Γ ⊢ e2 ⇒ v2 Γ; v2 ⊢ p2 ⇒ Γ2

...
Γ ⊢ en ⇒ vn Γ; vn ⊢ pn ⇒ Γn
Γ +Rec(Γ1 + · · · + Γn) ⊢ e ⇒ v

Γ ⊢ letrec p1 = e1 ; · · · ; pn = en in e ⇒ v

(157)

Γ ⊢ e ⇒ v
i ∈ {1, . . . ,m}

Γ; v ⊢ p1 ⇒ FAIL
...

Γ; v ⊢ pi−1 ⇒ FAIL
Γ; v ⊢ pi ⇒ Γ′ Γ + Γ′ ⊢ ei ⇒ v′

Γ ⊢ case e of p1⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ v′

(158)

Γ ⊢ e ⇒ v
∀i ∈ {1, . . . ,m} : Γ; v ⊢ pi ⇒ FAIL

Γ ⊢ case e of p1⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ [Match]
(159)

Γ ⊢ e ⇒ f f = (absent, v)
Γ ⊢ e1 ⇒ v′

Γ ⊢ fieldcase e in α of absent ⇉ e1 ‖ · · · ‖ present p ⇉ e2 type τ ⇒ v′

(160)

Γ ⊢ e ⇒ f f = (present, v)
Γ; v ⊢ p ⇒ Γ′ Γ + Γ′ ⊢ e2 ⇒ v′

Γ ⊢ fieldcase e in α of absent ⇉ e1 ‖ · · · ‖ present p ⇉ e2 type τ ⇒ v′

(161)

s = (mem, ens) ∀i ∈ {1, . . . ,m} : eni /∈ Dom ens
∀i, j ∈ {1, . . . ,m}, i 6= j : eni 6= enj m ≥ 1

s′ = (mem, ens + {en1, . . . , enm}) s′; Γ + {c1 7→ en1, . . . , cm 7→ enm} ⊢ e ⇒ v; s′′

s; Γ ⊢ letex c1 : τ1, . . . , cm : τmin e ⇒ v; s′′

(162)
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Γ ⊢ e ⇒ v
Γ ⊢ e handle p1⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ v

(163)

Γ ⊢ e ⇒ [ex]
i ∈ {1, . . . ,m}

Γ; ex ⊢ p1 ⇒ FAIL
...

Γ; ex ⊢ pi−1 ⇒ FAIL
Γ; ex ⊢ pi ⇒ Γ′ Γ + Γ′ ⊢ ei ⇒ v

Γ ⊢ e handle p1⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ v

(164)

Γ ⊢ e ⇒ [ex]
∀i ∈ {1, . . . ,m} : Γ; ex ⊢ pi ⇒ FAIL

Γ ⊢ e handle p1⇉ e1 ‖ · · · ‖ pm ⇉ em ⇒ [ex]
(165)

Γ ⊢ e ⇒ ex
Γ ⊢ raise e ⇒ [ex]

(166)
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Patterns

Γ; v ⊢ p ⇒ Γ′ / FAIL

Γ; v ⊢ x ⇒ {x 7→ v}
(167)

Γ; v ⊢ p ⇒ Γ′/FAIL

Γ; v ⊢ p : τ ⇒ Γ′/FAIL
(168)

Γ; v ⊢ p ⇒ Γ′/FAIL

Γ; v ⊢ x as p ⇒ {x 7→ v} + Γ′/FAIL
(169)

v = c

Γ; v ⊢ c : σ ⇒ {}
(170)

v 6= c

Γ; v ⊢ c : σ ⇒ FAIL
(171)

c 6= ref v = (c, v′) Γ; v’ ⊢ p ⇒ Γ′/FAIL

Γ; v ⊢ c(p) : σ ⇒ Γ′/FAIL
(172)

c 6= ref v 6= (c, v′)

Γ; v ⊢ c(p) : σ ⇒ FAIL
(173)

s = (mem, ens) mem(addr) = v s; Γ; v ⊢ p ⇒ Γ′/FAIL; s

s; Γ; addr ⊢ ref(p) : σ ⇒ Γ′/FAIL; s
(174)

Γ(c) = en v = en

Γ; v ⊢ c ex ⇒ {}
(175)

Γ(c) = en v 6= en

Γ; v ⊢ c ex ⇒ FAIL
(176)

Γ(c) = en v = (en, v′) v’ ⊢ Γ; p ⇒ Γ′/FAIL

Γ; v ⊢ c(p) ex τ ⇒ Γ′/FAIL
(177)

Γ(c) = en v 6= (en, v′)

Γ; v ⊢ c(p) ex τ ⇒ FAIL
(178)

v = val(scon)

Γ; v ⊢ scon ⇒ {}
(179)

v 6= val(scon)

Γ; v ⊢ scon ⇒ FAIL
(180)

Γ; v ⊢ ⇒ {}
(181)

Γ; r ⊢ {} ⇒ {}
(182)
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r1 ⊢# lab1 ⇒ v1; r2 Γ; v1 ⊢ p1 ⇒ Γ1

...
rm ⊢# labm ⇒ vm; rm+1 Γ; vm ⊢ pm ⇒ Γm

Γ; rm+1 ⊢ p ⇒ Γm+1

Γ; r1 ⊢ {lab1 = p1, . . . ,labm = pm, p} ⇒ Γ1 + · · · + Γm + Γm+1

(183)

i ∈ {1, . . . ,m}
r1 ⊢# lab1 ⇒ v1; r2 Γ; v1 ⊢ p1 ⇒ Γ1

...
ri−1 ⊢# labi−1 ⇒ vi−1; ri Γ; vi−1 ⊢ pi−1 ⇒ Γi−1

ri ⊢# labi ⇒ vi; ri+1 Γ; vi ⊢ pi ⇒ FAIL
Γ; r1 ⊢ {lab1 = p1, . . . ,labm = pm, p} ⇒ FAIL

(184)

r1 ⊢# lab1 ⇒ v1; r2 Γ; v1 ⊢ p1 ⇒ Γ1

...
rm ⊢# labm ⇒ vm; rm+1 Γ; vm ⊢ pm ⇒ Γm

Γ; rm+1 ⊢ p ⇒ FAIL
Γ; r1 ⊢ {lab1 = p1, . . . ,labm = pm, p} ⇒ FAIL

(185)

v = f = (present, v′) Γ; v′ ⊢ p ⇒ Γ′/FAIL
Γ; v ⊢ present : σpre ? p ⇒ Γ′/FAIL

(186)

Record Field Extraction and Removal

r ⊢# lab ⇒ v; r′

lab ∈ Dom r r′ = r\{lab 7→ ·}
v = r(lab) f = (present, v)

r ⊢# lab ⇒ f; r′
(187)

lab /∈ Dom r f = (absent, {})

r ⊢# lab ⇒ f; r
(188)

17.9 Comments on Dynamic Semantics

• Rule (146): addr /∈ Dom mem indicates that addr is a fresh memory
address.

• Rules (151), (162), (175), (176), (177) and (178): The Naked CeXL to ξ-
Calculus translation ensures that storing the map from constructor names
to exception names in the value environment does not give any conflicts.

• Rule (154): Claimed theorem: e always evaluates to a record value r not
containing any of the labels labi1 · · · labin . Also notice that these are the
only fields we add - i.e. those with present field values.

• Rule (162): eni /∈ Dom ens indicates that eni are fresh exception names.
eni 6= enj indicates that they are also all different.
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• Rule (186): The static semantics will ensure that v actually is a present
field value at this point.

• Rule (188): We just put an arbitrary value (here {}) in the absent field
value. It’s never going to be used.
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18 Grammar of Naked CeXL

This section presents the grammar of Naked CeXL - the language with the full
power of the CeXL language but without syntactic sugar. The lexical details
of how identifiers and program constants look are given later, when we present
the full syntax.

18.1 Notational Conventions

The following conventions are used:

• The brackets 〈 〉 encose optional phrases.

• For any class X (over which x ranges) we define the syntax class Xseq
(over which xseq ranges) as follows:

xseq ::= (x1, · · · , xn) (sequence, n ≥ 1)
(empty sequence)

x (singleton sequence)

(Note that the ”· · · ” used here, a meta-symbol indicating syntactic rep-
etition, must not be confused with ”...” which is a reserved word of the
language.)

• Alternative forms for each phrase class are in order of decreasing prece-
dence. This precedence resolves ambiguity in parsing as explained in sec-
tion 21 which contains the full CeXL grammar.

• L (respectively R) means left (respectively right) association.

• The syntax of types binds more tightly than that of expressions.

• The syntax of restrictions binds more tightly than that of types.

• Each iterated construct (e.g. match . . . ) extends as far right as possible;
thus, parentheses may be needed around an expression which terminates
with a match, e.g. ”fn match”, if this occurs within a larger match.
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18.2 Grammar Productions

Patterns

atpat ::= wildcard
scon special constant
longvid value identifier
{ 〈 patrow 〉 } record
( pat )

pat ::= atpat atomic
longvid atpat constructed pattern
pat : ty typed
vid 〈 : ty 〉 as pat layered

patrow ::= lab = pat 〈 , patrow 〉 present field
lab ?= pat 〈 , patrow 〉 optional field
... 〈 = pat 〉 optional at end of row

Expressions and Matches

atexp ::= scon special constant
longvid value identifier
{ 〈 exprow 〉 } record
let 〈 decs 〉 in exp end local declaration
fieldcase exp in tyvar of case on optional field

fieldmatch type ty end
( exp )

exp ::= atexp atomic
exp atexp application (L)
exp : ty typed (L)
exp handle match handle exception
raise exp raise exception
case exp of match case
fn match function

exprow ::= lab = exp 〈 , exprow 〉 present field
lab ?= exp 〈 , exprow 〉 optional field
... = exp optional at end of row

fieldmatch ::= absent => exp1 | present atpat => exp2 match optional field

match ::= mrule 〈 | match 〉

mrule ::= pat => exp
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Declarations

decs ::= dec 〈 ; 〉 〈 decs 〉 sequential declaration

dec ::= val typms valbind value declaration
val typms rec valbind recursive value declaration
res vid 〈 = crestr 〉 restriction declaration
type typbind type declaration
datatype datbind datatype declaration
datatype tycon = datatype longtycon datatype replication
exception exbind exception declaration

valbind ::= pat = exp 〈 and valbind 〉

typbind ::= typms tycon = ty 〈 and typbind 〉

datbind ::= typms tycon = conbind 〈 and datbind 〉

conbind ::= vid 〈 of ty 〉 〈 | conbind 〉

exbind ::= vid 〈 of ty 〉 〈 and exbind 〉
vid = longvid 〈 and exbind 〉

Simple Nested Structures

program ::= strdecs a CeXL program

strdecs ::= strdec 〈 ; 〉 〈 strdecs 〉 sequential structure declaration

strdec ::= dec declaration
structure strbind structure

strbind ::= strid = struct 〈 strdecs 〉 end structure binding
strid = longstrid structure replication

Type Parameters

typms ::= 〈 [ typarams ] 〉 possibly restricted type parameters

typarams ::= tyvars 〈 : crestr 〉 〈 , typarams 〉 type parameters

tyvars ::= tyvar 〈 ; tyvars 〉 type variables
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Types

tyargs ::= tyvar = ty 〈 , tyargs 〉 type arguments

fieldstatus ::= - absent field
tyvar optional field

present field

tyrow ::= fieldstatus lab : ty 〈 , tyrow 〉 row type
... : tyvar optional at end of row

ty ::= tyvar type variable
{ 〈 tyrow 〉 } record type
〈 [ tyargs ] 〉 longtycon type construction
ty -> ty’ function type expression (R)
( ty )

Restrictions

crestr ::= restr 〈 + crestr 〉 combination of restrictions

restr ::= ∼{ 〈 labels 〉 } forbidden fields
typats type patterns
res longvid use declared restriction

labels ::= lab 〈 , labels 〉 set of labels

typats ::= typat 〈 | typats 〉 type patterns

typat ::= 〈 [ typatargs ] 〉 longtycon type constructor pattern

typatargs ::= tyvar = typat 〈 , typatargs 〉 type pattern arguments
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18.3 Syntactic Limitations

• No expression row, pattern row or type-expression row may bind the same
lab twice.

• No restriction labels may contain the same lab twice.

• No binding valbind, typbind, datbind or exbind may bind the same identi-
fier twice; this also applies to value identifiers within a datbind.

• No tyvarseq may contain the same tyvar twice.

• No typarams, tyargs or typatargs may bind the same tyvar twice at the
same nesting level. That is, a tyvar occuring nested is unrelated to any
other tyvar, so the limitation only applies to tyvars immediately in the
same typarams, tyargs or typatargs.

• For each value binding pat = exp within val rec, exp must be of the form
fn match. The derived form of function-value binding given in section 22
necessarily obeys this restriction.

• No datbind, valbind or exbind may bind true, false, nil, ref, div, mod,
o, absent or present. No datbind or exbind may bind it.

• No datbind or typbind may bind the type constructor ?.

• No exbind may bind Match or Bind.

• No exbind which occur directly at top-level or in a structure may contain
type variables. Hence, only exbind within the decs part of a let-expression
may contain type variables.

• No datbind or typbind may refer to type variables other than those men-
tioned in the parameter list typarams in the beginning of the datbind or
typbind.

• No real constant may occur in a pattern.

• The infix identifier = may not occur in a pattern.

• Any tyrow in a record type containing ... : tyvar at the end must also
contain at least one field.

• Any patrow in a record pattern containing ... 〈 = pat 〉 at the end must
also contain at least one field.

• Any exprow in a record expression containing ... = exp at the end must
also contain at least one field.

18.4 Comments on the Grammar

Some of the reasons for why the grammar looks as it does were already given
in section 5.11.
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19 Naked CeXL To ξ-Calculus Translation

This translation is mostly syntactial. However, some semantic operations are
also done, e.g. taking the closure in datatypes.

Additional Syntax and Semantic Objects for Translation

Syntax Name Semantic Objects

θ ::= Λ[α1 :: ξ1, . . . , αn :: ξn].τ TyFun = ∪p≥0 (TyVar × Restrict) p × Type

ζ ::= {α1 7→ τ1, . . . , αn 7→ τn} TyArgs = TyVar fin

→
Type

∆ ::= {α1 7→ ξ1, . . . , αn 7→ ξn} TyVarRes = TyVar fin

→
Restrict

is ::= e | c | v IdStatus = ∅ ∪ ∅ ∪ ∅

V E ::= {longvid1 7→ (σ1, is1, vid1), . . . , ValEnv = LongVId fin

→
TyScheme × IdStatus × VId

longvidn 7→ (σn, isn, vidn)}

RE ::= {longvid1 7→ ξ1, . . . , ResEnv = LongVId fin

→
Restrict

longvidn 7→ ξn}

TE ::= {longtycon1 7→ θ1, . . . , TyEnv = LongTyCon fin

→
TyFun

longtyconn 7→ θn}

N ::= {vid1, . . . , vidn} CNames = Fin(VId)

NN ::= {vid1 7→ vid′
1, . . . , vidn 7→ vid′

n} NameMap = VId fin

→
VId

ν ::= {d1, . . . ,dn} TyNames = Fin(TyName)

E ::= (V E, RE, TE,∆) Env = ValEnv × ResEnv × TyEnv × TyVarRes

(N, ν, prefix) Global = CNames × TyNames × LongVId

19.1 About the Translation

In the translation rules we place parentheses as needed in the ξ-Calculus code for
syntactical grouping. We write side conditions at the side in a separate column.
This translation will not declare any types or datatypes in the translated code.
Types and datatypes will instead be placed in the resulting ξ-Calculus program
as part of the syntax as they are needed. Exceptions are delcared in ξ-Calculus
though, but they are still also placed explicitly in the ξ-Calculus program where
they are used.

We also maintain a global state during the translation. This is the semantic
object Global. It is used for generating new unique names for datatype construc-
tors and unique names for the types of datatypes. We do this by updating the
global state as needed during the translation. For this we use fresh(N) = vid
for choosing a vid /∈ Dom N and subsequently adding {vid} to N to prevent it
from being chosen again. We do the same with fresh(ν) = vid.
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19.2 The Prefix Variable

The global state also contains the variable prefix. During translation, prefix
contains the name of the (possibly nested) structure which is currently being
translated. We use this for prefixing the exception names and variable names to
be used in the generated ξ-Calculus code, so as to avoid name clashes. We add
this prefix to a variable name vid by writing prefix + vid. We also use similar
notation in other places for concatenating variable names.

The prefix variable is explicitly passed along in the translation functions for
translating structure declarations. This shows how the variable is maintained
during translation.

When packing structures into the environment, we need to be able to remove
the outer structure identifier from the variable prefix. We do this by defining a
the following function inn accodring to the following rules:

prefix inn(prefix)

strid1. 7→ single identifier becomes nothing
strid1.strid2.· · · .stridn. 7→ strid2.· · · .stridn. sequence of identifiers, n ≥ 2

(notice the extra period after stridn)

19.3 Application of Type Functions: ζθ

We write application of a type function θ to an argument ζ of types as ζθ. If
θ = Λ[α1 :: ξ1, . . . , αn :: ξn].τ and ζ = {α1 7→ τ1, . . . , αn 7→ τn} we set

ζθ = τ⌈τ1/α1, . . . , τn/αn⌉

understood as the usual rules for substitution (β-conversion). As usual, the
variables in ConsType and TyPat may not be substituted, since they are just
parameter names for the constructors.

The order of the arguments in ζ is irrelevant here, but the names of the type
variables must match between the type function and the arguments. This is
what gives CeXL the feature Named Type Parameters. Furthermore, the types
τ1, . . . , τn must respect the restrictions ξ1, . . . , ξn respectively. This can be done
by unifying them with a fresh free type respecting this restriction. E.g. for τi
we can create the fresh free type τ ′i and restrict it with τ ′i |ξi and unify τi with
τ ′i .

During this substitution, we also allow some of the arguments to be missing.
This is what gives CeXL the feature Optional Type Arguments. I.e. we only
require Dom ζ ⊆ Dom θ (where Dom θ is understood as the TyVars in the
parameter list). For all missing arguments, we create fresh types with the
restriction of their parameters in θ. These types are used for further unification,
so it will really be fresh meta variables. So as an example, assume that θ =
Λ[α1 :: ξ1, . . . , αn :: ξn].τ and ζ = {α1 7→ τ1, . . . , αi 7→ τi} with i ≤ n. For the
type function application ζθ, we create fresh τi+1, . . . , τn and restrict them with
τi+1|ξi+1

, . . . , τn|ξn . These τi+1, . . . , τn are thus free for further unification.
ζθ still becomes:

ζθ = τ⌈τ1/α1, . . . , τn/αn⌉
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19.4 No Free Types: ⊲τ⊳

When translating declarations of types, datatypes and exceptions, we need to
make sure that a declared type τ do not contain any free types. We represent this
condition by the notation: ⊲τ⊳. In an implemenation based on the unification
algorithm, it corresponds to checking that τ do not cantain any meta variables.
This condition does not prevent τ from containing type variables though. This
check is required because of the CeXL feature Partial Type Instantiation.

19.5 Combination of Restrictions: ⋊⋉

When translating combinations of restrictions crestr, we need to be able to
combine restrictions. We do this by defining the operator ⋊⋉ on restrictions by
these rules:

ξ ⋊⋉ ◦ ⇒ ξ
◦ ⋊⋉ ξ ⇒ ξ
ω ⋊⋉ ω′ ⇒ ω ∪ ω′

ψ1/ · · · /ψm ⋊⋉ ψ′
1/ · · · /ψ

′
k ⇒ ψ′′

1/ · · · /ψ
′′
q where q ≥ 1 and

{ψ′′
1 , . . . , ψ

′′
q } = {ψ1, . . . , ψm} ∩ {ψ′

1, . . . , ψ
′
k}

109



19.6 Predefined Semantic Objects

We need the predefined semantic objects that we used in ξ-Calculus. We also
have a few additional predefined objects.

We need the following constructor types (ConsType) to be predefined:

[]absent{absent} signifies an absent record field
[]present{present} signifies a present record field
[a = ·]ref{ref} special constructor for supporting references
[]exn{} special constructor only for exceptions

We also need the following type schemes (TyScheme) to be predefined:

σunit = ∀[].{} for the type unit
σabs = ∀[].[]absent{absent} for constructor for absent record field
σpre = ∀[].[]present{present} for constructor for present record field
σref = ∀[α :: ◦].α :: ◦ → [a = α :: ◦]ref{ref} for constructor for references

σunit is used in the translation as a dummy type scheme for variables stored
in the value environment V E. It is because we don’t need the types of variables
in this translation. We only need the types of constructors and exceptions.

We need to prevent certain constructor names from being redeclared. This
is done by putting them in the global N before starting the translation. So
when starting the translation we define:

N = {true, false,nil, ::, ref, absent, present}.

Similarly we need to prevent certain type names from being redeclared.
When starting the translation we thus define:

ν = {bool, int, real,word, string, char, list, ref, absent, present, exn, ?}.

Finally, when the infix operator := occurs it must be represented as such for
the semantics in ξ-Calculus to work as intended.
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19.7 Translation Functions

The translation is defined as translation functions. They translate syntactically
from Naked CeXL syntax to ξ-Calculus syntax. We use the translation functions
below. The [ and ] around the ξ-Calculus syntax emphasizes that the resulting
ξ-Calculus syntax may not always form complete valid syntactical ξ-Calculus
entities. This happens where the Naked CeXL grammar divides its syntax into
a finer granularity of entities than the ξ-Calculus grammar. The ǫ-functions
differ in that they usually return some kind of environment. The ξǫ-functions
return a pair of both ξ-Calculus code and an environment.

ξatpat : Env ×NakedCeXLatpat → [ξpattern]
ξpat : Env ×NakedCeXLpat → [ξpattern]
ξpatrow : Env ×NakedCeXLpatrow → [ξpattern]

ξatexp : Env ×NakedCeXLatexp → [ξexpression]
ξexp : Env ×NakedCeXLexp → [ξexpression]
ξexprow : Env ×NakedCeXLexprow → [ξexpression]
ξfmatch : Env ×NakedCeXLfieldmatch → [ξexpression]
ξmatch : Env ×NakedCeXLmatch → [ξexpression]
ξmrule : Env ×NakedCeXLmrule → [ξexpression]
ξdecs : Env ×NakedCeXLdecs ×NakedCeXLexp → [ξexpression]

ξdec : Env × Env ×NakedCeXLdec → [ξexpression]
ξvalbind : Env × Env ×NakedCeXLvalbind → [ξexpression]
ξexbind : Env ×NakedCeXLexbind → [ξexpression]

ξtyvar : Env ×NakedCeXLtyvar → ξT yV ar×Restrict

ξfldstat : Env ×NakedCeXLfieldstatus → ξType

ξtyrow : Env ×NakedCeXLtyrow → [ξRow]
ξty : Env ×NakedCeXLty → ξType

ξcrestr : Env ×NakedCeXLcrestr → ξRestrict

ξrestr : Env ×NakedCeXLrestr → ξRestrict

ξlabels : NakedCeXLlabels → [ξExclLabs]
ξtypats : Env ×NakedCeXLtypats → ξTyP ats

ξtypat : Env ×NakedCeXLtypat → ξT yP at

ξtypatargs : Env ×NakedCeXLtypatargs → [ξT yP at]

ξprogram : Env × LongV id×NakedCeXLprogram → ξexpression

ξǫstrdecs : Env × LongV id×NakedCeXLstrdecs → [ξexpression] × Env
ξǫstrdec : Env × LongV id×NakedCeXLstrdec → [ξexpression] × Env
ξǫstrbind : Env × LongV id×NakedCeXLstrbind → [ξexpression] × Env

ǫatpat : Env × Flag ×NakedCeXLatpat → Env
ǫpat : Env × Flag ×NakedCeXLpat → Env
ǫpatrow : Env × Flag ×NakedCeXLpatrow → Env
ǫdec : Env ×NakedCeXLdec → Env
ǫvalbind : Env × Flag ×NakedCeXLvalbind → Env
ǫtypbind : Env ×NakedCeXLtypbind → Env
ǫdatbind : Env ×NakedCeXLdatbind → Env
ǫconnames : NakedCeXLconbind → NameMap
ǫconbind : Env ×NameMap × ξT yScheme ×NakedCeXLconbind → V alEnv
ǫexbind : Env ×NakedCeXLexbind → Env
ǫtyparams : Env ×NakedCeXLtyparams → TyV arRes
ǫtypms : Env ×NakedCeXLtypms → TyV arRes
ǫtyargs : Env ×NakedCeXLtyargs → TyArgs

ǫpackstruct : Env × Env × LongV id×NakedCeXLstrdecs → Env
ǫpackstrdec : Env × Env × LongV id×NakedCeXLstrdec → Env
ǫpackdec : Env × Env × LongV id×NakedCeXLdec → Env
ǫpackstrbind : Env × Env × LongV id×NakedCeXLstrbind → Env
ǫpackvalbind : Env × Env × LongV id×NakedCeXLvalbind → Env
ǫpacktypbind : Env × Env × LongV id×NakedCeXLtypbind → Env
ǫpackexbind : Env × Env × LongV id×NakedCeXLexbind → Env
ǫpackdatbind : Env × Env × LongV id×NakedCeXLdatbind → Env
ǫpackconbind : V alEnv × LongV id×NakedCeXLconbind → V alEnv
ǫpackatpat : Env × LongV id×NakedCeXLatpat → V alEnv
ǫpackpat : Env × LongV id×NakedCeXLpat → V alEnv
ǫpackpatrow : Env × LongV id×NakedCeXLpatrow → V alEnv
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19.8 Translation Rules

In addition to the syntax to be translated, many of the translation functions
take an environment consisting of a VE, an RE, a TE and a ∆ parameter. We
only write these environments explicitly in those rules where they are not just
transferred unaltered to nested translation functions. We typically write them
as (V E,RE, TE,∆) or just (E).

If a program being translated cannot be handled by these rules, it is to
be reported as an error in the Naked CeXL program, and thus in the CeXL
program from whence it was stripped.

Env × Naked CeXL ξ-Calculus Conditions
ξatpat[| |]
ξatpat[| scon |] scon
ξatpat(V E,RE, TE,∆)[| vid |] vid’ VE(vid) = (σunit, v, vid’)
ξatpat(V E,RE, TE,∆)[| longvid |] vid’ : σ VE(longvid) = (σ, c, vid’)
ξatpat(V E,RE, TE,∆)[| longvid |] vid’ ex VE(longvid) = (∀[].[]exn{}, e, vid’)
ξatpat[| { patrow } |] { ξpatrow [| patrow |] }
ξatpat[| {} |] {}
ξatpat[| ( pat ) |] ξpat[| pat |]

ξpat[| atpat |] ξatpat[| atpat |]
ξpat(V E,RE, TE,∆) vid’ ( ξatpat(V E,RE, TE,∆)[| atpat |] VE(longvid) = (σ, c, vid’)

[| longvid atpat |] ) : σ
ξpat(V E,RE, TE,∆) vid’ ( ξatpat(V E,RE, TE,∆)[| atpat |] VE(longvid) = (∀[].τ → []exn{}, e, vid’)

[| longvid atpat |] ) ex τ
ξpat[| pat : ty |] ξpat[| pat |] : ξty [| ty |]
ξpat[| vid : ty as pat |] vid’ as ( ξpat[| pat |] : ξty [| ty |] ) VE(vid) = (σunit, v, vid’)
ξpat[| vid as pat |] vid’ as ξpat[| pat |] VE(vid) = (σunit, v, vid’)

ξpatrow [| lab ?= pat |] lab = ξpat[| pat |] , {}
ξpatrow [| lab ?= pat , patrow |] lab = ξpat[| pat |] , ξpatrow [| patrow |]
ξpatrow [| lab = pat |] lab = ( present : σpre) ?

( ξpat[| pat |] ) , {}
ξpatrow [| lab = pat , patrow |] lab = ( present : σpre) ?

( ξpat[| pat |] ) , ξpatrow [| patrow |]
ξpatrow [| ... = pat |] ξpat[| pat |]
ξpatrow [| ... |]
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Env × Flag × Naked CeXL Env Conditions
ǫatpat(E, rec)[| |] E
ǫatpat(E, rec)[| scon |] E
ǫatpat((V E,RE, TE,∆), false)[| vid |] (V E + {vid 7→ (σunit,v, prefix + vid)}, VE(vid) = (σunit, v, vid’)

RE, TE,∆) or vid /∈ Dom VE
ǫatpat((V E,RE, TE,∆), false)[| longvid |] (V E,RE, TE,∆) VE(longvid) = (σ, c, vid’)
ǫatpat((V E,RE, TE,∆), false)[| longvid |] (V E,RE, TE,∆) VE(longvid) = (∀[].[]exn{}, e, vid’)
ǫatpat((V E,RE, TE,∆), true)[| vid |] (V E + {vid 7→ (σunit,v, prefix + vid)}, VE(vid) = (σ, is, vid’)

RE, TE,∆) or vid /∈ Dom VE
ǫatpat(E, rec)[| { patrow } |] ǫpatrow(E, rec)[| patrow |]
ǫatpat(E, rec)[| {} |] E
ǫatpat(E, rec)[| ( pat ) |] ǫpat(E, rec)[| pat |]

ǫpat(E, rec)[| atpat |] ǫatpat(E, rec)[|atpat |]
ǫpat((V E,RE, TE,∆), rec)[| longvid atpat |] ǫatpat((V E,RE, TE,∆), rec)[| atpat |] VE(longvid) = (σ, c, vid’)
ǫpat((V E,RE, TE,∆), rec)[| longvid atpat |] ǫatpat((V E,RE, TE,∆), rec)[| atpat |] VE(longvid) =

(∀[].τ → []exn{}, e, vid’)
ǫpat(E, rec)[| pat : ty |] ǫpat(E, rec)[| pat |]

ǫpat(E, false)[| vid 〈 : ty 〉 as pat |] (V E + {vid 7→ (σunit,v, prefix + vid)}, VE(vid) = (σunit, v, vid’)
RE, TE,∆) or vid /∈ Dom VE

where
ǫpat(E, rec)[| pat |] = (V E,RE, TE,∆)

ǫpat(E, true)[| vid 〈 : ty 〉 as pat |] (V E + {vid 7→ (σunit,v, prefix + vid)}, VE(vid) = (σ, is, vid’)
RE, TE,∆) or vid /∈ Dom VE

where
ǫpat(E, rec)[| pat |] = (V E,RE, TE,∆)

ǫpatrow(E, rec)[| lab = pat |] ǫpat(E, rec)[| pat |]
ǫpatrow(E, rec)[| lab ?= pat |] ǫpat(E, rec)[| pat |]
ǫpatrow(E, rec)[| lab = pat , patrow |] ǫpatrow(E′, rec)[| patrow |]

where
ǫpat(E, rec)[| pat |] = E′

ǫpatrow(E, rec)[| lab ?= pat , patrow |] ǫpatrow(E′, rec)[| patrow |]
where
ǫpat(E, rec)[| pat |] = E′

ǫpatrow(E, rec)[| ... = pat |] ǫpat(E, rec)[| pat |]
ǫpatrow(E, rec)[| ... |] E

Comments:

• The flag parameter rec is used to control the translation for val bindings
in declarations, as will be seen later in the translation function ǫvalbind.
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Env × Naked CeXL ξ-Calculus Conditions
ξatexp[| scon |] scon
ξatexp(V E,RE, TE,∆)[| longvid |] vid’ VE(longvid) = (σunit, v, vid’)
ξatexp(V E,RE, TE,∆)[| longvid |] vid’ : σ VE(longvid) = (σ, c, vid’)
ξatexp(V E,RE, TE,∆)[| longvid |] vid’ ex τ VE(longvid) = (∀[].τ , e, vid’)
ξatexp[| { exprow } |] { ξexprow [| exprow |] }
ξatexp[| {} |] {}
ξatexp[| let in exp end |] ξexp[| exp |]
ξatexp[| let decs in exp end |] ξdecs[| decs |][| exp |]
ξatexp(E)[| fieldcase exp in tyvar of fieldcase ξexp(E)[| exp |] in tyvar (E) = (V E,RE, TE,∆)

fieldmatch type ty end |] of ξfmatch(E)[| fieldmatch |] ∆(tyvar) =
type ξty(E)[| ty |] []absent{absent} / []present{present}

or tyvar /∈ Dom ∆
ξatexp[| ( exp ) |] ξexp[| exp |]

ξexp[| atexp |] ξatexp[| atexp |]
ξexp[| exp atexp |] ξexp[| exp |] ξatexp[| atexp |]
ξexp[| exp : ty |] ξexp[| exp |] : ξty [| ty |]
ξexp[| raise exp |] raise ξexp[| exp |]
ξexp[| exp handle match |] ξexp[| exp |] handle ξmatch[| match |]
ξexp[| case exp of match |] case ξexp[| exp |] of ξmatch[| match |]
ξexp[| fn match |] λx.case x of ξmatch[| match |] fresh x

ξexprow[| lab ?= exp |] lab = ξexp[| exp |] , {}
ξexprow[| lab ?= exp , exprow |] lab = ξexp[| exp |] , ξexprow [| exprow |]
ξexprow[| lab = exp |] lab = ( present : σpre) ?

( ξexp[| exp |] ) , {}
ξexprow[| lab = exp , exprow |] lab = ( present : σpre) ?

( ξexp[| exp |] ) , ξexprow[| exprow |]
ξexprow[| ... = exp |] ξexp[| exp |]

Env × Naked CeXL ξ-Calculus Conditions
ξfmatch(E)[| absent => exp1 absent ⇉ ξexp(E)[| exp1 |] ‖

| present atpat => exp2 |] present ξatpat(E
′)[| atpat |] ⇉ ξexp(E′)[| exp2 |]

where
ǫatpat(E, false)[| atpat |] = E′

ξmatch(E)[| mrule |] ξmrule(E)[| mrule |]
ξmatch(E)[| mrule | match |] ξmrule(E)[| mrule |] ‖ ξmatch(E)[| match |]

ξmrule(E)[| pat => exp |] ξpat(E
′)[| pat |] ⇉ ξexp(E′)[| exp |]

where
ǫpat(E, false)[| pat |] = E′

ξdecs(E)[| dec 〈 ; 〉 |][| exp |] ξdec(E,E
′)[| dec |] ξexp(E′)[| exp |]

where
ǫdec(E)[| dec |] = E′

ξdecs(E)[| dec 〈 ; 〉 decs |][| exp |] ξdec(E,E
′)[| dec |] ξdecs(E′)[| decs |][| exp |]

where
ǫdec(E)[| dec |] = E′

Comments:

• The ξdec translation function is given 2 environments. The first environ-
ment is the unmodified environment before the declaration dec takes place.
The second environment is the modified environment where the declara-
tions of dec have been added. This allows us to handle the val bindings
correctly in other rules.
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Env × Env × Naked CeXL ξ-Calculus Conditions
ξdec((V E,RE, TE,∆1), (V E

′, RE′, TE′,∆′
1)) let ξvalbind((V E′, RE′, TE′,∆′

2), (V E,RE, TE,∆2))
[| val typms valbind |] [| valbind |] in

where
ǫtypms(V E,RE, TE,∆1)[| typms |] = ∆2

and
ǫtypms(V E′, RE′, TE′,∆′

1)[| typms |] = ∆′
2

ξdec(E, (V E
′, RE′, TE′,∆′

1)) letrec ξvalbind((V E′, RE′, TE′,∆′
2), (V E

′, RE′, TE′,∆′
2))

[| val typms rec valbind |] [| valbind |] in
where
ǫtypms(V E′, RE′, TE′,∆′

1)[| typms |] = ∆′
2

ξdec(E,E
′)[| exception exbind |] letex ξexbind(E′)[| exbind |] in

ξdec(E,E
′)[| res vid 〈 = crestr 〉 |]

ξdec(E,E
′)[| type typbind |]

ξdec(E,E
′)[| datatype datbind |]

ξdec(E,E
′)[| datatype tycon =

datatype longtycon |]

ξvalbind(E1, E2)[| pat = exp |] ξpat(E1)[| pat |] = ξexp(E2)[| exp |]

ξvalbind(E1, E2)[| pat = exp and valbind |] ξpat(E1)[| pat |] = ξexp(E2)[| exp |]
; ξvalbind(E1, E2)[| valbind |]

Env × Naked CeXL ξ-Calculus Conditions
ξexbind(V E,RE, TE,∆)[| vid 〈 of ty 〉 |] vid’ : τ VE(vid) = (∀[].τ , e, vid’)

ξexbind(V E,RE, TE,∆)[| vid 〈 of ty 〉 vid’ : τ , VE(vid) = (∀[].τ , e, vid’)
and exbind |] ξexbind(V E,RE, TE,∆)[| exbind |]

ξexbind(V E,RE, TE,∆)[| vid = longvid |] vid’ : τ VE(vid) = (∀[].τ , e, vid’)

ξexbind(V E,RE, TE,∆)[| vid = longvid vid’ : τ , VE(vid) = (∀[].τ , e, vid’)
and exbind |] ξexbind(V E,RE, TE,∆)[| exbind |]

Comments:

• ξvalbind takes two environments as argument. The first is to be used for the
patterns in the bindings and the second is to be used for the expressions
in the bindings.

• In the rule for val in ξdec we pass the environments (E′, E) to ξvalbind
because the patterns must include the new bindings (contained in E′)
whereas in the expressions these bindings are not seen at this point (i.e.
they are not in E).

• On the other hand we pass (E′, E′) to ξvalbind in the val rec rule to make
the recursive binding work.

• For the typms in the val and val rec bindings we update the ∆1 and ∆′
1

respectively to ∆2 and ∆′
2 respectively, to get the specified restrictions in

the value bindings.

• In the rule for exception in ξdec pass E′ to ξexbind because we need to use
the newly declared exception names when generating the ξ-Calculus code.
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Env × Naked CeXL Env Conditions
ǫdec(V E,RE, TE,∆) (V E′, RE′, TE′,∆)

[| val typms valbind |] where
ǫvalbind((V E,RE, TE,∆′), false)[| valbind |] = (V E′, RE′, TE′,∆′′)

and
ǫtypms(V E,RE, TE,∆)[| typms |] = ∆′

ǫdec(V E,RE, TE,∆) (V E′, RE′, TE′,∆)
[| val typms rec valbind |] where

ǫvalbind((V E,RE, TE,∆′), true)[| valbind |] = (V E′, RE′, TE′,∆′′)
and
ǫtypms(V E,RE, TE,∆)[| typms |] = ∆′

Comments

• In the val rec binding we pass true to the rec parameter for ǫpat. This
means that we ignore all constructors and exceptions in patterns here.
This allows new identifiers to be declared even though the same identifiers
have been declared earlier as constructors.5

• Notice that neither of the environments ∆′ and ∆′′ are propagated out
from ǫdec.

5This corresponds to rule (26) in The Definition of Standard ML ’97 where identifier status
is overwritten in the recursive binding
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Env × Naked CeXL Env Conditions
ǫdec(V E,RE, TE,∆)[| res vid |] (V E,RE + {vid 7→ ◦}, TE,∆)

ǫdec(V E,RE, TE,∆)[| res vid = crestr |] (V E,RE + {vid 7→ ξ}, TE,∆)
where
ξcrestr(V E,RE, TE,∆)[| crestr |] = ξ

ǫdec(V E,RE, TE,∆)[| type typbind |] ǫtypbind(V E,RE, TE,∆)[| typbind |]

ǫdec(V E,RE, TE,∆)[| datatype datbind |] (V E + Clos V E′, RE′, TE′,∆′) The rules below
where apply to Clos V E′

ǫdatbind({}, RE, TE + TE′,∆)[| datbind |]
= (V E′, RE′, TE′,∆′)

ǫdec(V E,RE, TE,∆)[| datatype tycon = (VE, RE, TE + {tycon 7→ θ},∆) TE(longtycon) = θ
datatype longtycon |] θ = Λ[α1 :: ξ1, . . . , αn :: ξn].κ

ǫdec(V E,RE, TE,∆)[| exception exbind |] ǫexbind(V E,RE, TE,∆)[| exbind |]

Rules for Constructor Quantification:

• Notice that the binding for TE is recursive in the translation of datatypes.
This allows the types to be used recursively in the declaration.

• When taking the closure of the value environment V E of constructors
resulting from translation with ξdatbind, the following rule apply: The
choice of quantification of the resulting type scheme σ must be such that
each constructor is quantified with the same variables as the ConsType κ.
So assume that

κ = [a1 = α1 :: ξ1, · · · , an = αn :: ξn]d{c1, . . . , ck}

with a1 ≡ α1, . . . , an ≡ αn (i.e. the ai and αi are the same names). Then
the resulting type scheme σ must be quantified with

∀[α1 :: ξ1, · · · , αn :: ξn]

This is the same quantification as the one explicitly given in the translation
function ǫconbind, so the easiest for an implementation is to just keep this
quantification.

This quantification means that if the constructor has type of the form κ
(the same κ as before) then

σ = ∀[α1 :: ξ1, · · · , αn :: ξn].[a1 = α1 :: ξ1, · · · , an = αn :: ξn]d{c1, . . . , ck}

and if the constructor has type of the form τ → κ then

σ = ∀[α1 :: ξ1, · · · , αn :: ξn].τ → [a1 = α1 :: ξ1, · · · , an = αn :: ξn]d{c1, . . . , ck}

Comments

• The right-hand side of datatype replications is only required to be a Con-
sType, which means that also the primitive types like int, real, string etc.
are allowed.

• None of ǫdatbind or ǫtypbind change the environment ∆, so it is safe to
return the ∆′ that they return.

117



Env × Flag × Naked CeXL Env Conditions
ǫvalbind(E, rec)[| pat = exp |] ǫpat(E, rec)[| pat |]
ǫvalbind(E, rec)[| pat = exp and valbind |] ǫvalbind( ǫpat(E, rec)[| pat |] , rec)[| valbind |]

Env × Naked CeXL Env Conditions
ǫtypbind(V E,RE, TE,∆)[| typms (VE, RE, TE + {tycon 7→ ⊲τ⊳

tycon = ty |] Λ[α1 :: ξ1, . . . , αn :: ξn].τ},∆) ∆′ ⊢tspec τ
where
ǫtypms(V E,RE, TE, {})[| typms |] = ∆′ =

{α1 7→ ξ1, · · · , αn 7→ ξn}
and
ξty(V E,RE, TE,∆′)[| ty |] = τ

ǫtypbind(V E,RE, TE,∆)[| typms ǫtypbind(V E,RE, TE + {tycon 7→ ⊲τ⊳

tycon = ty and typbind |] Λ[α1 :: ξ1, . . . , αn :: ξn].τ},∆) ∆′ ⊢tspec τ
[| typbind |]

where
ǫtypms(V E,RE, TE, {})[| typms |] = ∆′ =

{α1 7→ ξ1, · · · , αn 7→ ξn}
and
ξty(V E,RE, TE,∆′)[| ty |] = τ

Comments:

• In the side conditions we use ⊲τ⊳ to ensure that τ doesn’t contain any free
type variables. We use ∆ ⊢tspec τ from the static semantics of ξ-Calculus
to make sure that the type τ is well-formed.

• We pass an empty environment of type variables bound to restrictions
when translating type parameters for declarations. This is because only
the type variables present in the parameter lists are allowed when we
declare types and datatypes. The syntactic restrictions ensure this.
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Env × Naked CeXL Env Conditions
ǫdatbind(V E,RE, TE,∆)[| typms (VE + ǫconbind((V E,RE, TE,∆′), NN ′, fresh(ν) = vid

tycon = conbind |] ∀[α1 :: ξ1, · · · , αn :: ξn].κ)[| conbind |],
RE, TE + {tycon 7→ Λ[α1 :: ξ1, · · · , αn :: ξn].κ}, ∆}

where
ǫconnames[| conbind |] = NN ′ =

{vid1 7→ vid′
1, . . . , vidn 7→ vid′

n}
and
ǫtypms(V E,RE, TE, {})[| typms |] = ∆′ =

{α1 7→ ξ1, · · · , αn 7→ ξn}
and
κ = [a1 = α1 :: ξ1, · · · , an = αn :: ξn]vid{vid′

1, . . . , vid
′
n}

and
a1 ≡ α1, . . . , an ≡ αn

ǫdatbind(V E,RE, TE,∆)[| typms ǫdatbind(VE + ǫconbind((V E,RE, TE,∆′), NN ′, fresh(ν) = vid
tycon = conbind ∀[α1 :: ξ1, · · · , αn :: ξn].κ)[| conbind |],
and datbind |] RE, TE + {tycon 7→ Λ[α1 :: ξ1, · · · , αn :: ξn].κ}, ∆}

[| datbind |]
where
ǫconnames[| conbind |] = NN ′ =

{vid1 7→ vid′
1, . . . , vidn 7→ vid′

n}
and
ǫtypms(V E,RE, TE, {})[| typms |] = ∆′ =

{α1 7→ ξ1, · · · , αn 7→ ξn}
and
κ = [a1 = α1 :: ξ1, · · · , an = αn :: ξn]vid{vid′

1, . . . , vid
′
n}

and
a1 ≡ α1, . . . , an ≡ αn

Env × NameMap × TyScheme × Naked CeXL ValEnv Conditions
ǫconbind(E,NN,∀[α1 :: ξ1, · · · , αn :: ξn].κ)[| vid |] {vid 7→ (∀[α1 :: ξ1, · · · , αn :: ξn].κ, c, vid′)} NN(vid) = vid′

ǫconbind((V E,RE, TE,∆),NN, {vid 7→ (∀[α1 :: ξ1, · · · , αn :: ξn].τ → κ, c, vid′)} NN(vid) = vid′

∀[α1 :: ξ1, · · · , αn :: ξn].κ) where ⊲τ⊳

[| vid of ty |] ξty(V E,RE, TE,∆)[| ty |] = τ ∆ ⊢tspec τ

ǫconbind(E,NN,∀[α1 :: ξ1, · · · , αn :: ξn].κ) {vid 7→ (∀[α1 :: ξ1, · · · , αn :: ξn].κ, c, vid′)} + NN(vid) = vid′

[| vid | conbind |] ǫconbind(E,NN,κ)[| conbind |]

ǫconbind((V E,RE, TE,∆),NN, {vid 7→ (∀[α1 :: ξ1, · · · , αn :: ξn].τ → κ, c, vid′)} + NN(vid) = vid′

∀[α1 :: ξ1, · · · , αn :: ξn].κ) ǫconbind((V E,RE, TE,∆),NN,κ)[| conbind |] ⊲τ⊳

[| vid of ty | conbind |] where ∆ ⊢tspec τ
ξty(V E,RE, TE,∆)[| ty |] = τ

Naked CeXL NameMap Conditions
ǫconnames[| vid 〈 of ty 〉 |] {vid 7→ vid′} fresh(N) = vid’
ǫconnames[| vid 〈 of ty 〉 | conbind |] {vid 7→ vid′} + ǫconnames[| conbind |] fresh(N) = vid’

Comments:

• The syntactical restrictions ensure that a datatype declaration does not
declare the same constructor twice within the same datatype.

The translation rules map the constructor names to the names in the map
NN .

• a1 ≡ α1, . . . , an ≡ αn means that the ai and the αi are the same variable
names.
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Env × Naked CeXL Env Conditions
ǫexbind(V E,RE, TE,∆)[| vid |] (V E + {vid 7→ (σexn, e, prefix + vid)},

RE, TE,∆)

ǫexbind(V E,RE, TE,∆)[| vid of ty |] (V E + {vid 7→ (∀[].τ → κexn, e, prefix + vid)}, ⊲τ⊳

RE, TE,∆) if exbind occurs directly at
where top-level or in a structure,
ξty(V E,RE, TE,∆)[| ty |] = τ we require: tyvars τ = ∅

ǫexbind(V E,RE, TE,∆)[| vid ǫexbind(V E + {vid 7→ (σexn, e, prefix + vid)},
and exbind |] RE, TE,∆)[| exbind |]

ǫexbind(V E,RE, TE,∆)[| vid of ty ǫexbind(V E + {vid 7→ ⊲τ⊳

and exbind |] (∀[].τ → κexn, e, prefix + vid)}, if exbind occurs directly at
RE, TE,∆)[| exbind |] top-level or in a structure,

where we require: tyvars τ = ∅
ξty(V E,RE, TE,∆)[| ty |] = τ

ǫexbind(V E,RE, TE,∆)[| vid = longvid |] (V E + {vid 7→ (∀[].τ,e, vid′)}, V E(longvid) = (∀[].τ,e, vid′)
RE, TE,∆)

ǫexbind(V E,RE, TE,∆)[| vid = longvid ǫexbind(V E + {vid 7→ (∀[].τ,e, vid′)}, V E(longvid) = (∀[].τ,e, vid′)
and exbind |] RE, TE,∆)[| exbind |]

Comments:

• For exception declarations we prefix the internal constructor names with
the structure they are declared in - just as we do for variables.

• In the syntactic restrictions of CeXL and Naked CeXL, we require that
exceptions declared directly at top-level or in a structure do not contain
any type variables. However, in the presence of the feature Partial Type
Instantiation this syntactic restriction is not enough. Therefore we re-
quire that it still holds here in the translation for the τ which have been
translated from Naked CeXL.

• We do not check here that τ is well-formed, since this is also done in ξ-
Calculus at the letex bindings. The environment ∆ does not include the
implicitly bound type variables here, so the check for well-formedness can
only be done correctly in ξ-Calculus.
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Env × Naked CeXL TyVarRes Conditions
ǫtypms(V E,RE, TE,∆)[| |] ∆
ǫtypms(E)[| [ typarams ] |] ǫtyparams(E)[| typarams |]

ǫtyparams(E)[| tyvar1; · · · ; tyvarm |] {tyvar1 7→ ◦, . . . , tyvarm 7→ ◦} + ∆ m ≥ 1
where
E = (V E,RE, TE,∆)

ǫtyparams(E)[| tyvar1; · · · ; tyvarm : crestr |] {tyvar1 7→ ξ, . . . , tyvarm 7→ ξ} + ∆ m ≥ 1
where
ξcrestr(E)[| crestr |] = ξ

and
E = (V E,RE, TE,∆)

ǫtyparams(E)[| tyvar1; · · · ; tyvarm , typarams |] {tyvar1 7→ ◦, . . . , tyvarm 7→ ◦}+ m ≥ 1
ǫtyparams(E)[| typarams |]

ǫtyparams(E)[| tyvar1; · · · ; tyvarm : crestr , typarams |] {tyvar1 7→ ξ, . . . , tyvarm 7→ ξ}+ m ≥ 1
ǫtyparams(E)[| typarams |]

where
ξcrestr(E)[| crestr |] = ξ

Env × Naked CeXL TyArgs Conditions
ǫtyargs(E)[| tyvar = ty |] {tyvar 7→ ξty(E)[| ty |]}
ǫtyargs(E)[| tyvar = ty , tyargs |] {tyvar 7→ ξty(E)[| ty |]} + ǫtyargs(E)[| tyargs |]

Env × Naked CeXL TyVar × Restrict Conditions
ξtyvar(V E,RE, TE,∆)[| tyvar |] tyvar :: ◦ tyvar /∈ Dom ∆
ξtyvar(V E,RE, TE,∆)[| tyvar |] tyvar :: ξ ∆(tyvar) = ξ

Env × Naked CeXL ξ-Calculus Conditions
ξfldstat(E)[| - |] []absent{absent}
ξfldstat(E)[| tyvar |] ξtyvar(E)[| tyvar |]
ξfldstat(E)[| |] []present{present}

ξtyrow(E)[| fieldstatus lab : ty , lab : ξfldstat(E)[| fieldstatus |] tyrow 6= ... : tyvar
tyrow |] ? ξty(E)[| ty |] ,

ξtyrow(E)[| tyrow |]

ξtyrow(E)[| fieldstatus lab : ty , lab : ξfldstat(E)[| fieldstatus |]
... : tyvar |] ? ξty(E)[| ty |] ;

ξtyvar (E)[| tyvar |]

ξtyrow(E)[| fieldstatus lab : ty |] lab : ξfldstat(E)[| fieldstatus |]
? ξty(E)[| ty |] ; {}

ξty(E)[| tyvar |] ξtyvar(E)[| tyvar |]
ξty(E)[| {} |] {}
ξty(E)[| { tyrow } |] { ξtyrow(E)[| tyrow |] }

ξty(V E,RE, TE,∆)[| longtycon |] ζθ longtycon 6= ?

type function application TE(longtycon) = θ
subject to the restrictions
in section 19.3, where
ζ = {}

ξty(V E,RE, TE,∆) ζθ longtycon 6= ?
[| [ tyargs ] longtycon |] type function application TE(longtycon) = θ

subject to the restrictions
in section 19.3, where
ζ = ǫtyargs(V E,RE, TE,∆)[| tyargs |]

ξty(E)[| ty -> ty’ |] ξty(E)[| ty |] → ξty(E)[| ty’ |]
ξty(E)[| ( ty ) |] ξty(E)[| ty |]
ξty(E)[| [ ’a = ty1, ’b = ty2 ] ? |] ξty(E)[| ty1 |] ? ξty(E)[| ty2 |]
ξty(E)[| [ ’b = ty2, ’a = ty1 ] ? |] ξty(E)[| ty1 |] ? ξty(E)[| ty2 |]
ξty(E)[| [ ’a = ty ] ? |] ξty(E)[| ty |] ? τ fresh τ
ξty(E)[| [ ’b = ty ] ? |] τ ? ξty(E)[| ty |] fresh τ
ξty(E)[| ? |] τ1 ? τ2 fresh τ1, fresh τ2
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Env × Naked CeXL ξ-Calculus Conditions
ξcrestr(E)[| restr |] ξ ⊢ ξ

where
ξrestr(E)[| restr |] = ξ

ξcrestr(E)[| restr + crestr |] ξ ⋊⋉ ξcrestr(E)[| crestr |] ⊢ ξ
where
ξrestr(E)[| restr |] = ξ

ξrestr(E)[| ∼{ } |] {}
ξrestr(E)[| ∼{ labels } |] { ξlabels[| labels |] }
ξrestr(E)[| typats |] ξtypats(E)[| typats |]
ξrestr(V E,RE, TE,∆)[| res longvid |] ξ RE(longvid) = ξ

ξlabels[| lab |] lab
ξlabels[| lab , labels |] lab , ξlabels[| labels |]

ξtypats(E)[| typat |] ξtypat(E)[| typat |]
ξtypats(E)[| typat | typats |] ξtypat(E)[| typat |] / ξtypats(E)[| typats |]

ξtypat(V E,RE, TE,∆)[| longtycon |] []d{c1, . . . , ck} TE(longtycon) =
Λ[].[]d{c1, . . . , ck}

k ≥ 0, d 6= exn

ξtypat(V E,RE, TE,∆)[| [ typatargs ] [a1 = ψ1, . . . , an = ψn]d{c1, . . . , ck} TE(longtycon) =
longtycon |] where Λ[α1 :: ξ1, . . . , αn :: ξn].

ξtypatargs(V E,RE, TE,∆)[| typatargs |] = [a1 = α1 :: ξ1, · · · , an = αn :: ξn]
a1 = ψ1, . . . , an = ψn d{c1, . . . , ck}

k ≥ 0, d 6= exn
ψ1 ≫ ξ1, . . ., ψn ≫ ξn

ξtypatargs(E)[| tyvar = typat |] tyvar = ξtypat(E)[| typat |]
ξtypatargs(E)[| tyvar = typat , tyvar = ξtypat(E)[| typat |] ,

typatargs |] ξtypatargs(E)[| typatargs |]

Comments:

• Notice that when translating type patterns, the number of parameters
and the parameter names specified in the Naked CeXL syntax must be
the same as declared for the constructors used in the type pattern.

It is expected that type patterns will not be used very much in the lan-
guage except for specifying absent | present, since we don’t support
any general typecase construct.

• We don’t allow the type name []exn{} in typat - even though it probably
wouldn’t cause any problems. This is enforced by d 6= exn.
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Env × LongVId × Naked CeXL ξ-Calculus Conditions
ξprogram(E, prefix)[| strdecs |] ξcode {}

where
ξǫstrdecs(E, prefix)[| strdecs |] = (ξcode, E

′)

Env × LongVId × Naked CeXL ξ-Calculus × Env Conditions
ξǫstrdecs(E, prefix)[| strdec 〈 ; 〉 |] ξǫstrdec(E, prefix)[| strdec |]

ξǫstrdecs(E, prefix)[| strdec 〈 ; 〉 strdecs |] (ξcode ξ
′
code, E

′′)
where
ξǫstrdec(E, prefix)[| strdec |] = (ξcode, E

′)
and
ξǫstrdecs(E′, prefix)[| strdecs |] = (ξ′code, E

′′)

ξǫstrdec(E, prefix)[| dec |] (ξdec(E,E
′)[| dec |], E′)

where
ǫdec(E)[| dec |] = E′

ξǫstrdec(E, prefix)[| structure strbind |] ξǫstrbind(E, prefix)[| strbind |]

ξǫstrbind(E, prefix)[| strid = struct strdecs end |] (ξcode, E
′′)

where
ξǫstrdecs(E, prefix + strid + ”.”)[| strdecs |] = (ξcode, E

′)
and
ǫpackstruct(E,E

′, strid + ”.”)[| strdecs |] = E′′

ξǫstrbind((V E,RE, TE,∆), prefix) ( , (V E + {strid + ”.” + longvid 7→ (σ, is, vid) |
[| strid = longstrid |] V E(longstrid + ”.” + longvid) = (σ, is, vid)},

RE + {strid + ”.” + longvid 7→ ξ |
RE(longstrid + ”.” + longvid) = ξ},
TE + {strid + ”.” + longtycon 7→ θ |
TE(longstrid + ”.” + longtycon) = θ},

∆))

Comments:

• The translation functions ξǫstrdecs, ξǫstrdec and ξǫstrbind return a pair of
both ξ-Calculus program code and an environment. We use variables like
ξcode to represent generated ξ-Calculus code in these rules.

• The translation of dec, strdec and strdecs results in both a ξ-Calculus
program which is a (possibly empty) sequence of nested let, letrec and letex
expressions. This means that the sequence of strdecs needs an expression
at the end of the resulting program. This expression for the last let, letrec
or letex will always be {} and it is supplied in the translation of program.

• During translation of simple nested structures, we explicitly pass the vari-
able prefix along with the translation functions. We consider this the
global variable prefix in all the other translation rules. This shows how
the variable is maintained. The prefix variable is not updated anywhere
else during translation so this does not give any ambiguity.

• In the rule for structure replication in ξǫstrbind we lookup all values in
the environment having the prefix longstrid + ”.” and add them to the
environment while giving them the new prefix strid + ”.”. This rule does
not produce any ξ-Calculus code, which explains the empty space before
the first comma.
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Env × Env × LongVId × Naked CeXL Env Conditions
ǫpackstruct(E,E

′, longvid)[| strdec 〈 ; 〉 |] ǫpackstrdec(E,E
′, longvid)[| strdec |]

ǫpackstruct(E,E
′, longvid)[| strdec 〈 ; 〉 strdecs |] ǫpackstruct(E

′′, E′, longvid)[| strdecs |]
where
ǫpackstrdec(E,E

′, longvid)[| strdec |] = E′′

ǫpackstrdec(E,E
′, longvid)[| structure strbind |] ǫpackstrbind(E,E′, longvid)[| strbind |]

ǫpackstrdec(E,E
′, longvid)[| dec |] ǫpackdec(E,E

′, longvid)[| dec |]

ǫpackdec(E,E
′, longvid) ǫpackvalbind(E,E′, longvid)[| valbind |]

[| val typms valbind |]

ǫpackdec(E,E
′, longvid) ǫpackvalbind(E,E′, longvid)[| valbind |]

[| val typms rec valbind |]

ǫpackdec(E,E
′, longvid)[| type typbind |] ǫpacktypbind(E,E′, longvid)[| typbind |]

ǫpackdec(E,E
′, longvid)[| exception exbind |] ǫpackexbind(E,E′, longvid)[| exbind |]

ǫpackdec(E,E
′, longvid)[| datatype datbind |] ǫpackdatbind(E,E′, longvid)[| datbind |]

ǫpackdec((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), (V E,RE, TE′(inn(longvid)
longvid)[| datatype tycon = datatype longtycon |] TE + {longvid + vid 7→ θ},∆) +tycon) = θ

ǫpackdec((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), (V E,RE + {longvid + vid 7→ ξ}, RE′(inn(longvid)
longvid)[| res vid 〈 = crestr 〉 |] TE,∆) +vid) = ξ

ǫpackstrbind(E,E′, longvid) ǫpackstruct(E,E
′, longvid + strid + ”.”)

[| strid struct strdecs end |] [| strdecs |]

ǫpackstrbind((V E,RE, TE,∆), (V E + {longvid’ + strid + ”.” + longvid 7→ (σ, is, vid)
(V E′, RE′, TE′,∆′), longvid′) | V E′(inn(longvid’) + strid + ”.” + longvid) =
[| strid = longstrid |] (σ, is, vid)},

RE + {longvid’ + strid + ”.” + longvid 7→ ξ |
RE′(inn(longvid’) + strid + ”.” + longvid) = ξ},

TE + {longvid’ + strid + ”.” + longtycon 7→ θ |
TE′(inn(longvid’) + strid + ”.” + longtycon) =

θ},
∆)

Comments:

• The rules for ǫpackstruct are given 2 environments. Those values declared
in the second environment which are also declared in the structure are
added to the first environment with the structure name as a prefix.

• In the rule for structure replication in ǫpackstrbind we lookup all values in
the second environment having the prefix inn(longvid’) + strid + ”.” and
insert them in the first environment, giving them the new prefix longvid’+
strid + ”.”.
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Env × Env × LongVId × Naked CeXL Env Conditions
ǫpackvalbind((V E, TE,RE,∆), E′, longvid) (V E + V E′, RE, TE,∆)

[| pat = exp |] where
ǫpackpat(E

′, longvid)[| pat |] = V E′

ǫpackvalbind((V E, TE,RE,∆), E′, longvid) ǫpackvalbind((V E + V E′, RE, TE,∆),
[| pat = exp and valbind |] E′, longvid)[| strdecs |]

where
ǫpackpat(E

′, longvid)[| pat |] = V E′

ǫpacktypbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), (V E,RE, TE′(inn(longvid)+
longvid)[| typms tycon = ty |] TE + {longvid + tycon 7→ θ},∆) tycon) = θ

ǫpacktypbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), ǫpacktypbind((V E,RE, TE + TE′′,∆), TE′(inn(longvid)+
longvid)[| typms tycon = ty and typbind |] (V E′, TE′, RE′,∆′), longvid)[| typbind |] tycon) = θ

where
TE′′ = {longvid + tycon 7→ θ}

ǫpackexbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), (V E + {longvid + vid 7→ (σ, e, vid′)}, V E′(inn(longvid)+
longvid)[| vid 〈 of ty 〉 |] RE, TE,∆) vid) = (σ, e, vid′)

ǫpackexbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), (V E,RE, TE,∆) V E′(inn(longvid)+
longvid)[| vid 〈 of ty 〉 |] vid) 6= (σ, e, vid′)

ǫpackexbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), (V E + {longvid′ + vid 7→ (σ, e, vid′)}, V E′(inn(longvid’)+
longvid′)[| vid = longvid |] RE, TE,∆) vid) = (σ, e, vid′)

ǫpackexbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), (V E,RE, TE,∆) V E′(inn(longvid’)+
longvid′)[| vid = longvid |] vid) 6= (σ, e, vid′)

ǫpackexbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), ǫpackexbind((V E + V E′′, RE, TE,∆), V E′(inn(longvid)+
longvid)[| vid 〈 of ty 〉 and exbind |] (V E′, TE′, RE′,∆′), longvid)[| exbind |] vid) = (σ, e, vid′)

where
V E′′ = {longvid + vid 7→ (σ, e, vid′)}

ǫpackexbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), ǫpackexbind((V E,RE, TE,∆), V E′(inn(longvid)+
longvid)[| vid 〈 of ty 〉 and exbind |] (V E′, TE′, RE′,∆′), longvid)[| exbind |] vid) 6= (σ, e, vid′)

ǫpackexbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), ǫpackexbind((V E + V E′′, RE, TE,∆), V E′(inn(longvid’)+
longvid′)[| vid = longvid and exbind |] (V E′, TE′, RE′,∆′), longvid′)[| exbind |] vid) = (σ, e, vid′)

where
V E′′ = {longvid′ + vid 7→ (σ, e, vid′)}

ǫpackexbind((V E, TE,RE,∆), (V E′, TE′, RE′,∆′), ǫpackexbind((V E,RE, TE,∆), V E′(inn(longvid’)+
longvid′)[| vid = longvid and exbind |] (V E′, TE′, RE′,∆′), longvid′)[| exbind |] vid) 6= (σ, e, vid′)

ǫpackdatbind((V E, TE,RE,∆), (V E + V E′′, RE, TE′(inn(longvid)+
(V E′, TE′, RE′,∆′), longvid) TE + {longvid + tycon 7→ θ},∆) tycon) = θ
[| typms tycon = conbind |] where

ǫpackconbind(V E′, longvid)[| conbind |] = V E′′

ǫpackdatbind((V E, TE,RE,∆), ǫpackdatbind((V E + V E′′, RE, TE + TE′′,∆), TE′(inn(longvid)+
(V E′, TE′, RE′,∆′), longvid) E′, longvid)[| datbind |] tycon) = θ
[| typms tycon = conbind and datbind |] where

ǫpackconbind(V E′, longvid)[| conbind |] = V E′′

and
TE′′ = {longvid + tycon 7→ θ}

ǫpackconbind(V E, longvid)[| vid 〈 of ty 〉 |] {longvid + vid 7→ (σ, c, vid′)} V E(inn(longvid)+
vid) = (σ, c, vid′)

ǫpackconbind(V E, longvid)[| vid 〈 of ty 〉 |] {} V E(inn(longvid)+
vid) 6= (σ, c, vid′)

ǫpackconbind(V E, longvid) {longvid + vid 7→ (σ, c, vid′)}+ V E(inn(longvid)+
[| vid 〈 of ty 〉 | conbind |] ǫpackconbind(V E, longvid)[| conbind |] vid) = (σ, c, vid′)

ǫpackconbind(V E, longvid) ǫpackconbind(V E, longvid)[| conbind |] V E(inn(longvid)+
[| vid 〈 of ty 〉 | conbind |] vid) 6= (σ, c, vid′)
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Env × Env × LongVId × Naked CeXL Env Conditions
ǫpackatpat(E, longvid)[| |] {}
ǫpackatpat(E, longvid)[| scon |] {}
ǫpackatpat((V E,RE, TE,∆), longvid)[| vid |] {longvid + vid 7→ (σ,v, vid′)} VE(inn(longvid)+

vid) = (σ,v, vid′)
ǫpackatpat((V E,RE, TE,∆), longvid)[| vid |] {} VE(inn(longvid)+

vid) 6= (σ,v, vid′)
ǫpackatpat(E, longvid)[| { patrow } |] ǫpackpatrow(E, longvid)[| patrow |]
ǫpackatpat(E, longvid)[| {} |] {}
ǫpackatpat(E, longvid)[| ( pat ) |] ǫpackpat(E, longvid)[| pat |]

ǫpackpat(E, longvid)[| atpat |] ǫpackatpat(E, longvid)[|atpat |]
ǫpackpat(E, longvid

′)[| longvid atpat |] ǫpackatpat(E, longvid
′)[| atpat |]

ǫpackpat(E, longvid)[| pat : ty |] ǫpackpat(E, longvid)[| pat |]

ǫpackpat((V E,RE, TE,∆), longvid) {longvid + vid 7→ (σ,v, vid′)}+ VE(inn(longvid)+
[| vid 〈 : ty 〉 as pat |] ǫpackpat((V E,RE, TE,∆), longvid)[| pat |] vid) = (σ,v, vid′)

ǫpackpat((V E,RE, TE,∆), longvid) ǫpackpat((V E,RE, TE,∆), longvid)[| pat |] VE(inn(longvid)+
[| vid 〈 : ty 〉 as pat |] vid) 6= (σ,v, vid′)

ǫpackpatrow(E, longvid)[| lab = pat |] ǫpackpat(E, longvid)[| pat |]

ǫpackpatrow(E, longvid)[| lab ?= pat |] ǫpackpat(E, longvid)[| pat |]

ǫpackpatrow(E, longvid) ǫpackpat(E, longvid)[| pat |]+
[| lab = pat , patrow |] ǫpackpatrow(E, longvid)[| patrow |]

ǫpackpatrow(E, longvid) ǫpackpat(E, longvid)[| pat |]+
[| lab ?= pat , patrow |] ǫpackpatrow(E, longvid)[| patrow |]

ǫpackpatrow(E, longvid)[| ... = pat |] ǫpackpat(E)[| pat |]

Comments:

• Notice that we only pack variables if they occur in the environment V E
marked as variables. If they are not marked as variables it means that
they have been redeclared later in the structure as a constructor or an ex-
ception. In that case it will be packed appropriately by a later declaration
in the structure.

We do similarly for constructors and exceptions.
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20 CeXL Lexical Syntax

This section describes the lexical part of the CeXL syntax.

20.1 Reserved Words and Symbols

The following is the list of reserved words in CeXL. They may not (except for
div, mod and o ) be used as identifiers:

and as datatype do op exception raise handle

andalso case else end fun fn if in let of

orelse then val rec while fwhile with withtype

open local nonfix infix infixr abstype

structure struct type res fieldcase div mod o

The following is a list of reserved symbols in CeXL. They may not (except
for the infix operators) be used as identifiers:

( ) [ ] { } ~{ , : ; ... _ | = <> :=

=> -> # :: @ ? + - < > <= >= * / ^ ?=

20.2 Special Constants

We assume an underlying alphabet of N characters (N ≥ 256), numbered 0 to
N − 1, which agrees with the ASCII character set on the characters numbered
0 to 127. The interval [0, N − 1] is called the ordinal range of the alphabet.
A string constant is a sequence, between quotes (”), of zero or more printable
characters (i.e. numbered 33 − 126), spaces or escape sequences. Each escape
sequence starts with the escape character \, and stands for a character sequence.
The escape sequences are:

\a A single character interpreted by the system as alert (ASCII 7)
\b Backspace (ASCII 8)
\t Horizontal tab (ASCII 9)
\n Linefeed, also known as newline (ASCII 10)
\v Vertical tab (ASCII 11)
\f Form feed (ASCII 12)
\r Carriage return (ASCII 13)
\ ddd The single character with number ddd (3 decimal digits

denoting an integer in the ordinal range of the alphabet).
\u xxxx The single character with number xxxx (4 hexadecimal

digits denoting an integer in the ordinal range of the alphabet).
\" ”
\\ \

\ f · · · f \ This sequence is ignored, where f · · · f stands for a sequence of
one or more formatting characters.

The formatting characters (which are also referred to as whitespace) are
the following subset of the non-printable characters: Space, tab, newline and
formfeed. The last form allows long strings to be written on more than one line,
by writing \ at the end of one line and at the start of the next.
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A character constant is a sequence of the form #s, where s is a string constant
denoting a string of size one character.

An integer constant (in decimal notation) is an optional negation symbol (~)
followed by a non-empty sequence of decimal digits 0, . . . ,9. An integer constant
(in hexadecimal notation) is an optional negation symbol (~) followed by 0x

followed by a non-empty sequence of hexadecimal digits 0, . . . ,9 and a, . . . ,f.
(A, . . . ,F may be used as alternatives for a, . . . ,f.)

A word constant (in decimal notation) is 0w followed by a non-empty se-
quence of decimal digits. A word constant (in hexadecimal notation) is 0wx

followed by a non-empty sequence of hexadecimal digits.
A real constant is an integer constant in decimal notation, possibly followed

by a point (.) and one or more decimal digits, possibly followed by an exponent
symbol (e or E) and an integer constant in decimal notation; at least one of
the optional parts must occur, hence no integer constant is a real constant.
Examples: 0.7, 3.3E5 and 3e~7. Non-examples: 23, .3, 4.E5 and 1e2.0.

Libraries may provide multiple numeric types and multiple string types.
To each string type corresponds an alphabet with ordinal range [0, N − 1] for
some N ≥ 256; each alphabet must agree with the ASCII character set on
the characters numbered 0 to 127. When multiple alphabets are supported, all
characters of a given string constant are interpreted over the same alphabet. For
each special constant, overloading resolution is used for determining the type of
the constant. However we will not define overloading resolution in this version
of the specification since it is currently not used.

We denote by SCon the class of special constants, i.e. the integer, real, word,
character and string constants; we shall use scon to range over SCon.

20.3 Comments

A comment is any character sequence within comment brackets (* *) in which
comment brackets are properly nested. No space is allowed between the two
characters which make up a comment bracket (* or *). An unmatched (*
should be detected by the language implementation.

20.4 Identifiers

The classes of identifiers are the following:

InfVid (infix identifiers)
VId (value identifiers) Long
TyVar (type variables)
TyCon (type constructors) Long
Lab (record labels)
StrId (structure identifiers) Long

We use vid, tycon, lab etc. to range over VId, TyCon and Lab etc. For each
class marked ”Long” there is a class LongX of long identifiers ; if x ranges over
X then longx ranges over LongX.

The syntax of these long identifiers is given by the following:

longx ::= x identifier
strid1.· · · .stridn.x qualified identifier (n ≥ 1)
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The qualified identifiers are for referring to identifiers declared within struc-
tures in CeXL. The class LongVId is extended to include identifiers of the form
strid1.· · · .stridn.infvid (n ≥ 1). This will allow identifiers such as Word.+,
Int.* etc. to be used but not to be declared.

An alphanumeric identifier is either a letter or a prime (’) followed by a
sequence of letters, digits, primes or underscores ( ). A symbolic identifier is
any non-empty sequence of the following symbols:

! % & $ # + - / : < = > ? @ \ ~ ‘ ^ | *

Identifiers are either alphanumeric or symbolic and in either case, reserved
words and reserved symbols are excluded. This means that for example # and
| are not identifiers, but ## and |=| are identifiers. The only exception to this
rule is that reserved words and symbols in the class InfVid of infix operators
may be used as infix identifiers. These infix operators may also be used as part
of a longvid identifier as already described. No infix operators may be rebound;
this precludes any syntactic ambiguity.

The following are all infix operators with fixity and precedence specified:

infvid Precedence Fixity
+ 6 Left
- 6 Left
* 7 Left
/ 7 Left
< 4 Left
> 4 Left
<= 4 Left
>= 4 Left

infvid Precedence Fixity
= 4 Left
<> 4 Left
:: 5 Right
@ 5 Right
^ 6 Left
:= 3 Left
div 7 Left
mod 7 Left
o 3 Left

All the infix operators are reserved words or reserved symbols as already
described.

A type variable tyvar may be any alphanumeric identifier starting with a
prime. The classes VId, TyCon and Lab are represented by identifiers not
starting with a prime. None of these classes contain any of the infix operators.
TyCon is extended to include the constructor ? which is a reserved symbol.
The class Lab is extended to include the numeric labels 1 2 3 · · · , i.e.
any numeral not starting with 0. The identifier class StrId is represented by
alphanumeric identifiers not starting with a prime.

TyVar is therefore disjoint from the other five classes and InfVid is disjoint
from the other classes. Otherwise, the syntax class of an occurrence of identifier
id in a CeXL phrase is determined by the rule that immediately before ”.” - i.e.
in a long identifier, id is a structure identifier.

By means of the above rules and the given grammar an implementation
can determine the class to which each identifier occurrence belongs. In this
document we therefore assume that the classes are all disjoint.
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20.5 Lexical Analysis

Each item of lexical analysis is either a reserved word, a reserved symbol, a
special constant, an infix identifier, a (possibly long) identifier, a type variable, a
(possibly long) type constructor, a label or a (possibly long) structure identifier.
Comments and whitespace separate items (except within string constants) and
are otherwise ignored. At each stage the longest next item is taken.
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21 Full CeXL Grammar

This section presents the full grammar of the CeXL language with all its syn-
tactical sugar.

21.1 Notational Conventions

The following conventions are used:

• The brackets 〈 〉 encose optional phrases.

• For any class X (over which x ranges) we define the syntax class Xseq
(over which xseq ranges) as follows:

xseq ::= (x1, · · · , xn) (sequence, n ≥ 1)
(empty sequence)

x (singleton sequence)

(Note that the ”· · · ” used here, a meta-symbol indicating syntactic rep-
etition, must not be confused with ”...” which is a reserved word of the
language.)

• Alternative forms for each phrase class are in order of decreasing prece-
dence. This precedence resolves ambiguity in parsing in the following way.
Suppose that a phrase class - we take exp as an example - has two alter-
native forms F1 and F2, such that F1 ends with an exp and F2 starts with
an exp. A specific case is

F1: if exp1 then exp2 else exp3

F2: exp1 andalso exp2

It will be enough to see how ambiguity is resolved in this specific case.
Suppose that the lexical sequence

· · · · · · if · · · then · · · else exp andalso · · · · · ·

is to be parsed, where exp stands for a lexical sequence which is already
determined as a subphrase (if necessary by applying the precedence rule).
Then the higher precedence F2 (in this case) dictates that exp associates
to the right, i.e. that the correct parse takes the form

· · · · · · if · · · then · · · else ( exp andalso · · · ) · · ·

not the form

· · · ( · · · if · · · then · · · else exp ) andalso · · · · · ·

Note particularly that the use of precedence does not decrease the class
of admissible phrases; it merely rejects alternative ways of parsing certain
phrases. In particular, the purpose is not to prevent a phrase, which is an
instance of a form with higher precedence, having a constituent which is
an instance of a form with lower precedence. Thus for example
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· · · andalso if · · · then · · · else · · · · · ·

is quite permissible, and will be parsed as

· · · andalso ( if · · · then · · · else · · · ) · · ·

• L (respectively R) means left (respectively right) association.

• The syntax of types binds more tightly than that of expressions.

• The syntax of restrictions binds more tightly than that of types.

• Each iterated construct (e.g. match . . . ) extends as far right as possible;
thus, parentheses may be needed around an expression which terminates
with a match, e.g. ”fn match”, if this occurs within a larger match.

21.2 The Grammar Productions

Patterns

atpat ::= wildcard
scon special constant
longvid value identifier
{ 〈 patrow 〉 } record
() 0-tuple
( pat1 , · · · , patn ) n-tuple, n ≥ 2
[ pat1 , · · · , patn ] list, n ≥ 0
( pat )

pat ::= atpat atomic
longvid atpat constructed pattern
pat1 infvid pat2 infixed value construction
pat : ty typed
vid 〈 : ty 〉 as pat layered

patrow ::= lab = pat 〈 , patrow 〉 present field
lab ?= pat 〈 , patrow 〉 optional field
vid 〈 : ty 〉 〈 as pat 〉 〈 , patrow 〉 label as variable
... 〈 = pat 〉 optional at end of row
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Expressions and Matches

atexp ::= scon special constant
longvid value identifier
op infvid infix value as identifier
{ 〈 exprow 〉 } record
# lab record field selector
() 0-tuple
( exp1 , · · · , expn ) n-tuple, n ≥ 2
[ exp1 , · · · , expn ] list, n ≥ 0
( exp1 ; · · · ; expn ) sequence, n ≥ 2
let 〈 decs 〉 in exp1 ; · · · ; expn end local declaration, n ≥ 1
fieldcase exp in tyvar of case on optional field

fieldmatch type ty end
( exp )

appexp ::= atexp
appexp atexp application expression (L)

infexp ::= appexp
infexp1 infvid infexp2 infixed application

exp ::= infexp
exp : ty typed (L)
exp handle match handle exception
exp1 andalso exp2 conjunction
exp1 orelse exp2 disjunction
raise exp raise exception
if exp1 then exp2 else exp3 conditional
fwhile exp do 〈 decs 〉 〈 in 〈 iterbind 〉 〉 end functional iteration
case exp of match case analysis
fn match function

exprow ::= lab = exp 〈 , exprow 〉 present field
lab ?= exp 〈 , exprow 〉 optional field
... = exp optional at end of row

iterbind ::= vid = exp 〈 , iterbind 〉 bind for iteration

fieldmatch ::= absent => exp1 | present atpat => exp2 match optional field

match ::= mrule 〈 | match 〉

mrule ::= pat => exp
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Declarations

decs ::= dec 〈 ; 〉 〈 decs 〉 sequential declaration

dec ::= val typms valbind value declaration
val typms rec valbind recursive value declaration
fun typms fvalbind function declaration
res vid 〈 = crestr 〉 restriction declaration
type typbind type declaration
datatype datbind datatype declaration
datatype tycon = datatype longtycon datatype replication
exception exbind exception declaration

valbind ::= pat = exp 〈 and valbind 〉

fvalbind ::= vid atpat11 · · · atpat1n 〈 : ty 〉 = exp1 m,n ≥ 1
| vid atpat21 · · · atpat2n 〈 : ty 〉 = exp2

...
...

| vid atpatm1 · · · atpatmn 〈 : ty 〉 = expm
〈 and fvalbind 〉

typbind ::= typms tycon = ty 〈 and typbind 〉

datbind ::= typms tycon = conbind 〈 and datbind 〉

conbind ::= vid 〈 of ty 〉 〈 | conbind 〉

exbind ::= vid 〈 of ty 〉 〈 and exbind 〉
vid = longvid 〈 and exbind 〉

Simple Nested Structures

program ::= strdecs a CeXL program

strdecs ::= strdec 〈 ; 〉 〈 strdecs 〉 sequential structure declaration

strdec ::= dec declaration
structure strbind structure

strbind ::= strid = struct 〈 strdecs 〉 end structure binding
strid = longstrid structure replication

Type Parameters

typms ::= [ typarams ] possibly restricted type parameters
tyvarseq unrestricted type parameters

typarams ::= tyvars 〈 : crestr 〉 〈 , typarams 〉 type parameters

tyvars ::= tyvar 〈 ; tyvars 〉 type variables
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Types

tyargs ::= tyvar = ty 〈 , tyargs 〉 type arguments

fieldstatus ::= - absent field
tyvar optional field

present field

tyrow ::= fieldstatus lab : ty 〈 , tyrow 〉 row type
... : tyvar optional at end of row

ty ::= tyvar type variable
{ 〈 tyrow 〉 } record type
[ tyargs ] longtycon type construction
tyseq longtycon tupled construction
ty1 * · · · * tyn tuple type, n ≥ 2
ty -> ty’ function type expression (R)
( ty )

Restrictions

crestr ::= restr 〈 + crestr 〉 combination of restrictions

restr ::= ∼{ 〈 labels 〉 } forbidden fields
typats type patterns
res longvid use declared restriction

labels ::= lab 〈 , labels 〉 set of labels

typats ::= typat 〈 | typats 〉 type patterns

typat ::= 〈 [ typatargs ] 〉 longtycon type constructor pattern
( typat1 , · · · , typatn ) longtycon tupled constructor pattern, n ≥ 1

typatargs ::= tyvar = typat 〈 , typatargs 〉 type pattern arguments

Comments:

• Instead of making the type parameters [ typarams ] optional in the gram-
mar production for typms (as was done in the Naked CeXL grammar),
the case where there are no type parameters is now encompassed by the
tyvarseq production of the grammar.

The same happens in ty for [ tyargs ] longtycon and tyseq longtycon.

The grammar for typat in the restrictions is different, in that it always
requires the parentheses to be present when using the tupled notation -
even when there is only one typat argument.
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21.3 Syntactic Limitations

The syntactic limitations are as for Naked CeXL:

• No expression row, pattern row or type-expression row may bind the same
lab twice.

• No restriction labels may contain the same lab twice.

• No binding valbind, typbind, datbind or exbind may bind the same identi-
fier twice; this also applies to value identifiers within a datbind.

• No tyvarseq may contain the same tyvar twice.

• No typarams, tyargs or typatargs may bind the same tyvar twice at the
same nesting level. That is, a tyvar occuring nested is unrelated to any
other tyvar, so the limitation only applies to tyvars immediately in the
same typarams, tyargs or typatargs.

• For each value binding pat = exp within val rec, exp must be of the form
fn match. The derived form of function-value binding given in section 22
necessarily obeys this restriction.

• No datbind, valbind or exbind may bind true, false, nil, ref, div, mod,
o, absent or present. No datbind or exbind may bind it.

• No datbind or typbind may bind the type constructor ?.

• No exbind may bind Match or Bind.

• No exbind which occur directly at top-level or in a structure may contain
type variables. Hence, only exbind within the decs part of a let-expression
may contain type variables.

• No datbind or typbind may refer to type variables other than those men-
tioned in the parameter list typarams in the beginning of the datbind or
typbind.

• No real constant may occur in a pattern.

• The infix identifier = may not occur in a pattern.

• Any tyrow in a record type containing ... : tyvar at the end must also
contain at least one field.

• Any patrow in a record pattern containing ... 〈 = pat 〉 at the end must
also contain at least one field.

• Any exprow in a record expression containing ... = exp at the end must
also contain at least one field.
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21.4 Displaying Types to the User

Types displayed to the user should generally:

• Have all records flattened. This is also the only syntax supported by the
CeXL grammar

• Records which are really tuples should be displayed as such

• Type quantifications which are for unnamed instantiation (i.e. having type
variables called ’a, ’b, ’c etc.) without restrictions on the type variables
should be displayed using the tupled construction notation.

This will not always be compatible with Standard ML notation but it will
be compatible those places where the conventions of using ’a, ’b, ’c (and
in that order!) for type parameter names are followed
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22 CeXL To Naked CeXL Translation

Several derived forms are provided in CeXL. They are presented in the following
tables. Each derived form is given with its equivalent form. Thus each row of
the tables should be considered as a rewriting rule

CeXL ⇒ Naked CeXL

and these rules must be applied repeatedly to a phrase until it is transformed
into a phrase of Naked CeXL.

During the translation of the rules the translation is assumed to be done
by maintaining the grammatical grouping of the parsed CeXL syntax. So for
instance the translation of the following singleton list:

[ 5 :: nil ]

is reduced to

( 5 :: nil ) :: nil

with the parentheses indicating syntactic grouping.
The following comments apply to specific translation rules:

• During the translation, infix identifiers infvid will be placed in Naked
CeXL where usually only long identifiers longvid are allowed. They should
be treated in Naked CeXL as if they were simply long identifiers longvid.

• In the derived forms for tuples, in terms of records, we use n̄ to mean the
CeXL numeral which stands for the natural number n.

• In the derived forms for type arguments expressed in tuple notation, we
use n̂ to mean the CeXL type variable which is the nth element in the
lexicographical order of type variables:

’a,’b,· · · ,’z,’aa,’ab,· · · ,’az,’ba,’bb,’bc,· · · ,’zz,’aaa,’aab,· · ·

• A new phrase class of function-value bindings is introduced, accompanied
by a new declaration form fun fvalbind. The mixed forms val rec fvalbind,
val fvalbind and fun valbind are not allowed - though the first form arises
during the translation into Naked CeXL.

22.1 Atomic Expressions

CeXL atexp Naked CeXL Conditions
op infvid infvid
# lab fn { lab = vid , ... } => vid fresh vid
( ) {}
( exp1 , · · · , expn ) { 1 = exp1 , · · · , n̄ = expn } n ≥ 2
[ exp1 , · · · , expn ] exp1 :: · · · :: expn :: nil n ≥ 0
( exp1 ; · · · ; expn ; exp ) case exp1 of ( ) => n ≥ 1

...
case expn of ( ) => exp
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22.2 Infix Expressions

CeXL infexp Naked CeXL Conditions
infexp1 infvid infexp2 infvid ( infexp1 , infexp2 )

22.3 Expressions

CeXL exp Naked CeXL Conditions
if exp1 then exp2 else exp3 case exp1 of true => exp2

| false => exp3

exp1 orelse exp2 if exp1 then true else exp2

exp1 andalso exp2 if exp1 then exp2 else false

let 〈 decs 〉 in let 〈 decs 〉 in n ≥ 2
exp1 ; · · · ; expn end ( exp1 ; · · · ; expn ) end

fwhile exp do 〈 decs 〉 〈 in 〉 end let val rec vid = fn () => fresh vid
if exp then let 〈 decs 〉 in vid() end else ()
in vid() end

fwhile exp do 〈 decs 〉 in let val rec vid = fn { vid1, · · · , vidn } => n ≥ 1
vid1 = exp1, · · · , vidn = expn end if exp then let 〈 decs 〉 in fresh vid

vid { vid1 = exp1, · · · , vidn = expn } end
else { vid1 = vid1, · · · , vidn = vidn }
in vid { vid1 = vid1, · · · , vidn = vidn } end

22.4 Atomic Patterns

CeXL atpat Naked CeXL Conditions
( ) {}
( pat1 , · · · , patn ) { 1 = pat1 , · · · , n̄ = patn } n ≥ 2
[ pat1 , · · · , patn ] pat1 :: · · · :: patn :: nil n ≥ 0

22.5 Patterns

CeXL pat Naked CeXL Conditions
infpat1 infvid infpat2 infvid ( infpat1 , infpat2 )

22.6 Pattern Rows

CeXL patrow Naked CeXL Conditions
vid 〈 : ty 〉 〈 as pat 〉 〈 , patrow 〉 vid = vid 〈 : ty 〉 〈 as pat 〉 〈 , patrow 〉
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22.7 Declarations

CeXL dec Naked CeXL Conditions
fun typms fvalbind val typms rec fvalbind

22.8 Type Parameters

CeXL typms Naked CeXL Conditions
tyvar [ tyvar ]
( tyvar1 , · · · , tyvarn ) [ tyvar1 , · · · , tyvarn ] n ≥ 1

22.9 Function-value Bindings

CeXL fvalbind Naked CeXL Conditions
vid = fn vid1 => · · · fn vidn => m,n ≥ 1
case ( vid1 , · · · , vidn ) of fresh and distinct

vid atpat11· · · atpat1n 〈 : ty 〉 = exp1 (atpat11,· · · ,atpat1n) => exp1 〈 : ty 〉 vid1, · · · , vidn
| vid atpat21· · · atpat2n 〈 : ty 〉 = exp2 | (atpat21,· · · ,atpat2n) => exp2 〈 : ty 〉
...

...
...

...
| vid atpatm1· · · atpatmn 〈:ty〉 = expm | (atpatm1,· · · ,atpatmn) => expm 〈:ty〉

〈 and fvalbind 〉 〈 and fvalbind 〉

22.10 Type Expressions

CeXL ty Naked CeXL Conditions
ty longtycon [ ’a = ty ] longtycon
( ty1 , · · · , tyn ) longtycon [ ’a = ty1 , · · · , n̂ = tyn ] longtycon n ≥ 1
ty1 * · · · * tyn { 1 : ty1 , · · · , n̄ : tyn } n ≥ 2

22.11 Type Pattern in Restrictions

CeXL typat Naked CeXL Conditions
( typat1 , · · · , typatn ) longtycon [ ’a = typat1 , · · · , n̂ = typatn ] longtycon n ≥ 1
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23 Initial Environments

Certain semantic objects are expected to be present initially for CeXL programs.
This includes predefined operators, contructors, exceptions and so forth. Such
semantic objects are required both for the static semantics and for the dynamic
semantics. We define most of the semantic objects either in ξ-Calculus or by
description, since not all the semantic objects can be created directly using
CeXL notation. All names for identifiers, type constructors and the likes will
be as they are in CeXL though, since this is necessary.

23.1 Environment for Static Semantics of ξ-Calculus

The initial environment ∆ of type variables bound to restrictions in the static
semantics will be called ∆sta and is defined to be empty: ∆sta = {}.

The initial environment Γ of variables bound to type schemes in the static
semantics will be called Γsta and is defined to contain:

vid 7→ σ

! 7→ ∀[’a:: ◦].[’a=’a:: ◦]ref{ref} →’a:: ◦
:= 7→ ∀[’a:: ◦].{1 : [’a=’a:: ◦]ref{ref}, 2 :’a:: ◦; {}} → {}
@ 7→ ∀[’a:: ◦].{1 : [’a=’a:: ◦]list{nil,::}, 2 : [’a=’a:: ◦]list{nil,::}; {}} → [’a=’a:: ◦]list{nil,::}
absent 7→ ∀[’a:: ◦].[]absent{absent} ? ’a:: ◦
present 7→ ∀[’a:: ◦].’a:: ◦ → ([]present{present} ? ’a:: ◦)
= 7→ ∀[’a:: ξeq].{1 :’a:: ξeq, 2 :’a:: ξeq; {}} → []bool{true, false}
<> 7→ ∀[’a:: ξeq].{1 :’a:: ξeq, 2 :’a:: ξeq; {}} → []bool{true, false}
+ 7→ ∀[’a:: ξnum].{1 :’a:: ξnum, 2 :’a:: ξnum; {}} → ’a:: ξnum

- 7→ ∀[’a:: ξnum].{1 :’a:: ξnum, 2 :’a:: ξnum; {}} → ’a:: ξnum

* 7→ ∀[’a:: ξnum].{1 :’a:: ξnum, 2 :’a:: ξnum; {}} → ’a:: ξnum

/ 7→ ∀[].{1 : []real{· · · }, 2 : []real{· · · }; {}} → []real{· · · }
< 7→ ∀[’a:: ξnumtxt].{1 :’a:: ξnumtxt, 2 :’a:: ξnumtxt; {}} → []bool{true, false}
> 7→ ∀[’a:: ξnumtxt].{1 :’a:: ξnumtxt, 2 :’a:: ξnumtxt; {}} → []bool{true, false}
<= 7→ ∀[’a:: ξnumtxt].{1 :’a:: ξnumtxt, 2 :’a:: ξnumtxt; {}} → []bool{true, false}
>= 7→ ∀[’a:: ξnumtxt].{1 :’a:: ξnumtxt, 2 :’a:: ξnumtxt; {}} → []bool{true, false}
~ 7→ ∀[’a:: ξrealint].’a:: ξrealint → ’a:: ξrealint

^ 7→ ∀[].{1 : []string{· · · }, 2 : []string{· · · }; {}} → []string{· · · }
o 7→ ∀[’a:: ◦,’b:: ◦,’c:: ◦].{1 :’a:: ◦ →’b:: ◦, 2 :’c:: ◦ →’a:: ◦; {}} →’c:: ◦ →’b:: ◦
mod 7→ ∀[’a:: ξwordint].{1 :’a:: ξwordint, 2 :’a:: ξwordint; {}} → ’a:: ξwordint

div 7→ ∀[’a:: ξwordint].{1 :’a:: ξwordint, 2 :’a:: ξwordint; {}} → ’a:: ξwordint

abs 7→ ∀[’a:: ξrealint].’a:: ξrealint → ’a:: ξrealint

Where we have used the following restrictions:

ξrealint = []real{· · · } / []int{· · · }
ξwordint = []word{· · · } / []int{· · · }
ξnum = []word{· · · } / []real{· · · } / []int{· · · }
ξnumtxt = []word{· · · } / []real{· · · } / []int{· · · } / []string{· · · } / []char{· · · }
ξeq = []word{· · · } / []int{· · · } / []string{· · · } / []char{· · · }
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23.2 Environment for Dynamic Semantics of ξ-Calculus

The initial state s in the dynamic semantics is called sdyn and is the same as
(memdyn, ensdyn). The exception names ensdyn of this state are the exception
names Match and Bind.

The initial environment Γ of variables bound to values in the dynamic se-
mantics will be called Γdyn and is defined to contain:

vid 7→ v Class of v

:= 7→ := {:=}
absent 7→ (absent, {}) FieldVal
present 7→ (x, (present : σpre) ? x, {}, {}) FcnClosure
Match 7→ Match ExVal
Bind 7→ Bind ExVal

Here σpre is as defined earlier: σpre = ∀[].[]present{present}. Furthermore,
Γdyn contains value bindings defining the following functions:

• The operators =, <>, +, -, *, /, <, >, <=, >= are defined as one would
expect.

• ~ negates a real or an integer.

• ^ concatenates two strings.

• abs takes the absolute value of a real or an integer.

• mod takes modulus of an integer or a word.

• div makes integer division of an integer or a word.

• The operators o, ! and @ are defined by the equivalent of this CeXL code:

fun ! (ref v) = v

fun o (f, g) = fn x => f(g(x))

fun @ (x::xs, l) = x::(@ (xs, l))

| @ (nil , l) = l

We will not go through any more details here, since it is outside the scope of
this definition. A basis library definition is appropriate for defining the operators
in more detail.
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23.3 Environment for Naked CeXL To ξ-Calculus Trans-

lation

The initial value environment V E of variables bound to values is called V Etrans.
It is defined to contain:

longvid 7→ (σ, is, vid)

ref 7→ (∀[’a:: ◦].’a:: ◦ → [’a=’a:: ◦]ref{ref}, c, ref)
! 7→ (σunit, v, !)
:= 7→ (σunit, v, :=)
nil 7→ (∀[’a:: ◦].[’a=’a:: ◦]list{nil,::}, c,nil)
:: 7→ (∀[’a:: ◦].{1 :’a:: ◦, 2 : [’a=’a:: ◦]list{nil,::}; {}} → [’a=’a:: ◦]list{nil,::}, c, ::)
@ 7→ (σunit, v,@)
true 7→ (∀[].[]bool{true,false}, c, true)
false 7→ (∀[].[]bool{true,false}, c, false)
absent 7→ (σunit, v, absent)
present 7→ (σunit, v, present)
Match 7→ (∀[].[]exn{}, e,Match)
Bind 7→ (∀[].[]exn{}, e,Bind)
= 7→ (σunit, v,=)
<> 7→ (σunit, v, <>)
+ 7→ (σunit, v,+)
- 7→ (σunit, v, -)
* 7→ (σunit, v, *)
/ 7→ (σunit, v, /)
< 7→ (σunit, v, <)
> 7→ (σunit, v, >)
<= 7→ (σunit, v, <=)
>= 7→ (σunit, v, >=)
~ 7→ (σunit, v, ~)
^ 7→ (σunit, v,^)
o 7→ (σunit, v, o)
mod 7→ (σunit, v,mod)
div 7→ (σunit, v, div)
abs 7→ (σunit, v, abs)

Here we have used the type scheme σunit = ∀[].{} which is used as a dummy
type scheme for variables. An important thing to notice here is that absent

and present are variables - not constructors. They are for creating field values,
not just constructor values.

The initial restriction environment RE of variables bound to restrictions
is called REtrans. The initial type variable restriction environment ∆ of type
variables bound to restrictions is called ∆trans. They are both defined to be
empty:

REtrans = {}
∆trans = {}.
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The initial type environment TE of type constructors bound to type func-
tions is called TEtrans and is defined to contain:

longtycon 7→ θ

unit 7→ Λ[].{}
bool 7→ Λ[].[]bool{true,false}
absent 7→ Λ[].[]absent{absent}
present 7→ Λ[].[]present{present}
int 7→ Λ[].[]int{· · · }
word 7→ Λ[].[]word{· · · }
real 7→ Λ[].[]real{· · · }
char 7→ Λ[].[]char{· · · }
string 7→ Λ[].[]string{· · · }
list 7→ Λ[’a:: ◦].[’a=’a:: ◦]list{nil,::}
ref 7→ Λ[’a:: ◦].[’a=’a:: ◦]ref{ref}
exn 7→ Λ[].[]exn{}

The initial environment E is called Etrans and is defined as:

Etrans = (V Etrans, REtrans, TEtrans,∆trans)

The initial global set N of declared constructor names is called Ntrans and
we define:

Ntrans = {true, false,nil, ::, ref, absent, present}.

The initial global set ν of declared type names is called νtrans and we define:

νtrans = {bool, int, real,word, string, char, list, ref, absent, present, exn, ?}.

23.4 Extending to a Complete Basis Library

Extending the initial environments to a complete basis library in the style of
the Standard ML Basis Library is outside the scope of this definition. However,
the following must be realized:

• Operators like Word.+, Int.* etc. cannot be declared with the CeXL
language, so these would have to be predeclared somehow by an imple-
mentation.

• If structures like Word32 and Real64 are to be added they must extend
the overloading of built-in operators like + and mod appropriately.

• In some of the examples of this document, we rely on the function print

of type string -> unit to be defined. print is for printing the given
string on the standard output stream.
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24 Type-check and Execution of CeXL Programs

A CeXL program is represented by the phrase class program in the full CeXL
grammar of section 21. Such a program is reduced to a Naked CeXL program
using the rules of section 22.

If this succeeds without errors, the resulting Naked CeXL program is then
translated to ξ-Calculus by the rules presented in section 19 using the initial
environments of section 23.3. Assuming that the Naked CeXL program is called
program, the translation corresponds to the following rule:

ξprogram(Etrans, ””)[| program |] = e (189)

If the translation to ξ-Calculus is done without errors, e will be the result-
ing ξ-Calculus program. The type-check is done on ξ-Calculus using the rules
presented in sections 14, 15 and 16 with the initial environment from section
23.1. This corresponds to the following rule:

Γsta; ∆sta ⊢ e ⇒ τ (190)

If this type-inference completes without problems, we now have a valid well-
typed ξ-Calculus program. τ will always be the type {} and is not used. This
ξ-Calculus program e may now be executed according to the dynamic semantics
in section 17 using the initial environment from section 23.2. This corresponds
to the rule:

Γdyn ⊢ e ⇒ v (191)

The v is always the value of the empty record and is not used. This completes
the type-check and execution of CeXL programs and thus also this language
specification.
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25 A Few Regression Tests

This section shows some suitable regression tests for testing a CeXL implemen-
tation. It is far from enough for being a complete test and a more complete
set of tests is included in the implementation made available online. However,
at least some of the more tricky issues are tested here - including issues that
common programs might not trigger.

There are both illegal programs which are supposed to trigger a type er-
ror and legal programs which are supposed to pass the type checker and run
correctly.

The small example programs already mentioned various places in this doc-
ument should also be included in a regression test.

25.1 Demonstrating Value Restriction

Legal Test 1

(* A legal program which demonstrates the value restriction *)

fun f a b = b

(* This is illegal and does not give problems with the value restriction *)

val g : string -> string = f 5

Illegal Test 1

(* An illegal program which demonstrates the value restriction *)

fun f a b = b

(* This is illegal due to the value restriction *)

val g = f 5
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25.2 Demonstrating Scoping of Type Variables

Legal Test 1

(* A legal program showing the scope of type variables *)

fun f (a : ’a) =

let

(* The fact that ’b is only mentioned in a nested let

means that ’a and ’b are allowed to be

instantiated independently. *)

fun id (b : ’b) = b

(* So this is legal *)

val v1 = id a

in

(a, id)

end

(* And this is legal

(we need the type constraints because of the value restriction) *)

val (v3, f1 : string -> string) = (f 11)

val v4 = f1 "Different Type"

val (v5, f2 : int -> int) = (f "Different Type")

val v6 = f2 13

Illegal Test 1a

(* An illegal program showing the scope of type variables *)

fun f (a : ’a) =

(nil : ’b list;

let

(* The fact that ’b is mentioned directly under f

means that ’a and ’b may not be instantiated

independently. *)

fun id (b : ’b) = b

(* So this is NOT legal *)

val v1 = id a

in

(a, id)

end

)
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Legal Test 2

(* A legal program showing the scope of type variables *)

fun f (a : ’a) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 =

let

(* The fact that ’b is only mentioned in a nested let

means that ’a and ’b are allowed to be

instantiated independently. *)

(* And the parameters x1 x2 etc. should not have used ’b already! *)

fun id (b : ’b) = b

(* So this is legal *)

val v1 = id a

in

(a, id)

end

(* And this is legal and we must be able to give different types to

’a and ’b and to all the parameters x1 x2 etc.

(we need the type constraints because of the value restriction) *)

val (v3, f1 : string -> string) = (f 11 1.0 () 3.0 () 5.0 () 7.0 () 9.0 ())

val v4 = f1 "Different Type"

val (v5, f2 : int -> int) = (f "String" 1.0 () 3.0 () 5.0 () 7.0 () 9.0 ())

val v6 = f2 13
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25.3 Demonstrating Inference of Most General Unifier

Illegal Test 1

(* This is an illegal CeXL program, which worked with

versions 0.9.0 and 0.9.1 of the Definition of CeXL. *)

(* This is also an illegal Standard ML ’97 program. *)

fun freeMeta a =

let

val (b, c) = a

in

c

end

(* If the type of freeMeta is inferred correctly, this should be illegal, *)

(* but it succeeded in my implementation of CeXL before version 0.9.2 *)

val str = (freeMeta ("Hello", 5)) ^ " string concatenated with integer 5"

val _ = print str

Illegal Test 2

(* This is an illegal CeXL program, which worked with

versions 0.9.0 and 0.9.1 of the Definition of CeXL. *)

(* This is also an illegal Standard ML ’97 program. *)

fun metaScope x a b =

let

val aList = [x, a]

val bList = [x, b]

in

(aList, bList)

end

(* If the type of freeMeta is inferred correctly, this should be illegal, *)

(* but it succeeded in my implementation of CeXL before version 0.9.2 *)

val (is : int list, strs : string list) = metaScope 2 3 5

val _ = case strs of

str::_ => print str

| nil => print "Error: Empty list returned!"
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25.4 Demonstrating Requirement for Dynamic Allocation

of Exception Names

Legal Test 1

(* Example which demonstrates why it is necessary to allocate

exception names dynamically when type variables are allowed in

exceptions.

This test is valid both for Standard ML’97 and CeXL. *)

fun makeFuns (a : ’a) =

let

exception E of ’a

fun raiseF () =

(raise E a; ())

fun handleF (f : unit -> unit) =

(f ();

print ("Error: Function did not raise exception " ^

"as expected!");

a)

handle E x => x

in

(raiseF, handleF)

end

val (raiseInt, handleInt) = makeFuns 5

val (raiseString, handleString) = makeFuns "Crash test"

(* If exception names were not allocated dynamically,

this would give us two examples of unsafe type-casts! *)

val _ = (case handleInt raiseString of

i =>

print ("Error: Succeeded in making an unsafe type-cast " ^

"from string to int")

)

handle _ => print "OK 1/2\n"

val _ = (case handleString raiseInt of

s =>

print ("Error: Succeeded in making an unsafe type-cast " ^

"from int to string giving the ill-defined value: " ^ s)

)

handle _ => print "OK 2/2\n"
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25.5 Tests for Extensible Records

Legal Test 1

(* Example which checks that the type inference of extensible records

works for record expressions across variable bindings *)

fun extend3Times r =

let

val r1 = {a1 = 2, a2 = "Hello", a3 = 3.0, ... = r}

val r2 = {b1 = "World", b2 = 5, b3 = 11.0, ... = r1}

val r3 = {c1 = 13.0, c2 = 17, c3 = "Extend", ... = r2}

in

r3

end

(* Check that these patterns are valid *)

val {a1, ...} = extend3Times ()

val {b1, b2, b3, ...} = extend3Times ()

val {c1, c3, ...} = extend3Times ()

val {a1, a2, a3, b1, b2, b3, c1, c2, c3, ...} = extend3Times ()

Legal Test 2

(* Example which checks that the type inference of extensible records

works for record expressions across various expressions *)

fun extend3Times r =

{c1 = 13.0, c2 = 17, c3 = "Extend", ... =

case {b1 = "World", b2 = 5, b3 = 11.0, ... =

let

in

{a1 = 2, a2 = "Hello", a3 = 3.0, ... =

(fn x => x) r}

end

} of

x => x

}

(* Check that these patterns are valid *)

val {a1, ...} = extend3Times ()

val {b1, b2, b3, ...} = extend3Times ()

val {c1, c3, ...} = extend3Times ()

val {a1, a2, a3, b1, b2, b3, c1, c2, c3, ...} = extend3Times ()
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Legal Test 3

(* Example which checks that the type inference of extensible records

works for record patterns across variable bindings *)

fun extract3Times {a1, a2, a3, ... = r1} =

let

val {b1, b2, b3, ... = r2} = r1

in

let

val {c1, c2, c3, ... = r3} = r2

in

r3

end

end

(* Check that these calls are also valid *)

val r1 = extract3Times {a1 = 2, a2 = "Hello", a3 = 3.0,

b1 = "World", b2 = 5, b3 = 11.0,

c1 = 13.0, c2 = 17, c3 = "Extend"}

val r2 = extract3Times {a1 = 2, a2 = "Hello", a3 = 3.0, a4 = 23,

b1 = "World", b2 = 5, b3 = 11.0, b4 = 27.0,

c1 = 13.0, c2 = 17, c3 = "Extend", c4 = "Extra"}

Legal Test 4

(* Example which checks that the type inference of extensible records

works for record patterns across variable bindings *)

fun extract3Times {a1, a2, a3, ... = r1} =

let

val {b1, b2, b3, ... = r2} = r1

in

let

val {c1, c2, c3, ... = r3} = r2

in

r3

end

end

(* Check that these calls are also valid *)

val r1 = extract3Times {a1 = 2, a2 = "Hello", a3 = 3.0,

b1 = "World", b2 = 5, b3 = 11.0,

c1 = 13.0, c2 = 17, c3 = "Extend"}

val r2 = extract3Times {a1 = 2, a2 = "Hello", a3 = 3.0, a4 = 23,

b1 = "World", b2 = 5, b3 = 11.0, b4 = 27.0,

c1 = 13.0, c2 = 17, c3 = "Extend", c4 = "Extra"}
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Illegal Test 1a

(* Example which checks that the type inference of extensible records

prevents duplicate labels for record expressions across variable

bindings *)

fun extend3Times r =

let

val r1 = {a1 = 2, a2 = "Hello", a3 = 3.0, ... = r}

val r2 = {b1 = "World", b2 = 5, b3 = 11.0, a1 = 19, ... = r1}

val r3 = {c1 = 13.0, c2 = 17, c3 = "Extend", ... = r2}

in

r3

end

Illegal Test 1b

(* Example which checks that the type inference of extensible records

prevents duplicate labels for record expressions across variable

bindings *)

fun extend3Times r =

let

val r1 = {a1 = 2, a2 = "Hello", a3 = 3.0, ... = r}

val r2 = {b1 = "World", b2 = 5, b3 = 11.0, ... = r1}

val r3 = {a2 = "Goodbye", c1 = 13.0, c2 = 17, c3 = "Extend", ... = r2}

in

r3

end

Illegal Test 1c

(* Example which checks that the type inference of extensible records

prevents duplicate labels for record expressions across variable

bindings *)

fun extend3Times r =

let

val r1 = {a1 = 2, c2 = 23, a2 = "Hello", a3 = 3.0, ... = r}

val r2 = {b1 = "World", b2 = 5, b3 = 11.0, ... = r1}

val r3 = {c1 = 13.0, c2 = 17, c3 = "Extend", ... = r2}

in

r3

end
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Illegal Test 2a

(* Example which checks that the type inference of extensible records

prevents duplicate labels for record expressions across variable

bindings *)

fun extend3Times r =

{c1 = 13.0, c2 = 17, c3 = "Extend", ... =

case {b1 = "World", b2 = 5, b3 = 11.0, a2 = "Goodbye", ... =

let

in

{a1 = 2, a2 = "Hello", a3 = 3.0, ... =

(fn x => x) r}

end

} of

x => x

}

Illegal Test 2b

(* Example which checks that the type inference of extensible records

prevents duplicate labels for record expressions across variable

bindings *)

fun extend3Times r =

{a3 = 23.0, c1 = 13.0, c2 = 17, c3 = "Extend", ... =

case {b1 = "World", b2 = 5, b3 = 11.0, ... =

let

in

{a1 = 2, a2 = "Hello", a3 = 3.0, ... =

(fn x => x) r}

end

} of

x => x

}

Illegal Test 2c

(* Example which checks that the type inference of extensible records

prevents duplicate labels for record expressions across variable

bindings *)

fun extend3Times r =

{c1 = 13.0, c2 = 17, c3 = "Extend", ... =

case {b1 = "World", b2 = 5, b3 = 11.0, ... =

let

in

{a1 = 2, a2 = "Hello", c3 = "Goodbye", a3 = 3.0, ... =

(fn x => x) r}

end

} of

x => x

}
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Illegal Test 3a

(* Example which checks that the type inference of extensible records

works for record patterns across variable bindings *)

fun extract3Times {a1, a2, a3, b1, ... = r1} =

let

val {b1, b2, b3, ... = r2} = r1

in

let

val {c1, c2, c3, ... = r3} = r2

in

r3

end

end

Illegal Test 3b

(* Example which checks that the type inference of extensible records

works for record patterns across variable bindings *)

fun extract3Times {a1, a2, a3, ... = r1} =

let

val {b1, b2, a3, b3, ... = r2} = r1

in

let

val {c1, c2, c3, ... = r3} = r2

in

r3

end

end

Illegal Test 3c

(* Example which checks that the type inference of extensible records

works for record patterns across variable bindings *)

fun extract3Times {a1, a2, a3, ... = r1} =

let

val {b1, b2, b3, ... = r2} = r1

in

let

val {b3, c1, c2, c3, ... = r3} = r2

in

r3

end

end
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Illegal Test 4a

(* Example which checks that the type inference of extensible records

works for record patterns across various expressions *)

fun extract3Times {a1, a2, a3, b2, ... = r1} =

case r1 of

{b1, b2, b3, ... = r2} =>

(fn {c1, c2, c3, ... = r3} => r3) r2

Illegal Test 4b

(* Example which checks that the type inference of extensible records

works for record patterns across various expressions *)

fun extract3Times {a1, a2, a3, ... = r1} =

case r1 of

{b1, b2, b3, ... = r2} =>

(fn {a1, c1, c2, c3, ... = r3} => r3) r2

Illegal Test 4c

(* Example which checks that the type inference of extensible records

works for record patterns across various expressions *)

fun extract3Times {a1, a2, a3, ... = r1} =

case r1 of

{b1, b2, a2, b3, ... = r2} =>

(fn {c1, c2, c3, ... = r3} => r3) r2
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25.6 Examples of Type Inference in CeXL

The following are a few contrived examples to demonstrate some of the be-
hahiour of the type inference - in particular for polymorphic extensible records
and optional fields.

25.6.1 Legal Programs and Their Types

1. val f = fn z => (fn x => ({c = 5, x}, x)) {b = "", z}

(* CeXL type: *)

val [’a : ~{a, b}] f : ’a -> ({c : int, b : string, ... : ’a} * {b : string, ... : ’a})

2. val f = fn y => (fn x => ({b = 0, x}, {c = 0, x})) ({a = 5, y})

(* CeXL type: *)

val [’a : ~{a, b, c}] f : ’a -> ({b : int, a : int, ... : ’a} * {c : int, a : int, ... : ’a})

3. fun f {a, b, ... = r} = f {a, b, ... = r}

(* CeXL type: *)

val [’c : ~{a, b}] f : {a : ’a, b : ’b, ... : ’c} -> ’d

25.6.2 Illegal Programs

1. fun f {a, b, ... = r} = f {a = a, b = b, c = 2, ... = r}
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