
Image Correspondences for Camera Registration

Ánoq of the Sun, Hardcore Processing ∗

September 14, 2009

∗ c© 2009 Ánoq of the Sun (alias Johnny Bock Andersen)
Quoted as e.g.: Ánoq of the Sun, Ánoq, o., Ánoq, o. t. S. or Ánoq, of the Sun. Not: Sun, Á.
Ánoq is considered the ”family name”, always written and pronounced first.

Contents

1 Reader’s Guide 5

2 Introduction 5

2.1 Overview of Wide-baseline Image Correspondences for Camera Registration 5
2.1.1 Feature Detection . 7
2.1.2 Measurement Areas . 7
2.1.3 Feature Descriptors . 7
2.1.4 Feature Matching . 7
2.1.5 Camera View Relationship . 8
2.1.6 Iterations of Methods and Applications . 8

2.2 Detection Accuracy and Invariance . 8
2.3 Scale-Space for Feature Detectors . 9
2.4 The Gaussian Filter and Discrete Image Convolution 10
2.5 Our Focus . 11

3 Previous Work 11

3.1 Feature Detectors . 11
3.1.1 The Harris Corner and Edge Detector . 11
3.1.2 Scale Adapted Harris Point Detector: Harris-Laplace 12
3.1.3 Affine Adapted Harris Point Detector: Harris-Affine 12
3.1.4 Scale Adapted Harris Points and Adaptive Non-Maximum Suppression (ANMS)

for the Multi-Scale Oriented Patches (MOPS) Method for Image Stitching; a
Method Resulting in a Very Long Section Headline 13

3.1.5 Hessian-Laplace and Hessian-Affine . 13
3.1.6 Fast Hessian Detector . 14
3.1.7 Maximally Stable Extremal Regions: MSER . 14
3.1.8 Fast Level Set Transform: FLST . 14
3.1.9 Edge Based Regions: EBR . 15
3.1.10 Intensity Based Regions: IBR . 15
3.1.11 Other Detectors . 16

3.2 Feature Descriptors . 16
3.2.1 Scale-Invariant Feature Transform: SIFT . 16
3.2.2 Speeded Up Robust Features: SURF . 16
3.2.3 Multi-Scale Oriented Patches: MOPS . 17
3.2.4 Other Descriptors . 17

3.3 Feature Matching Strategies . 18
3.4 Work Comparing Methods . 19
3.5 General Presentations and Tutorials . 20

4 Conclusions of Previous Work 20

4.1 Conclusions regarding the Contents of Input Images . 20
4.2 Conclusions regarding Direct Pixel-Based Methods versus Feature-Based Methods 21
4.3 Conclusions regarding Feature Detection . 21
4.4 Conclusions regarding Feature Descriptors . 23
4.5 Conclusions regarding Feature Matching . 24

2

5 Design Analysis 25

5.1 Pipeline Considerations . 25
5.1.1 A Simple Pipeline . 25
5.1.2 A More Advanced Pipeline . 26

5.2 Desired Properties of the Methods for the Pipeline . 26
5.3 Feature Detection . 27
5.4 Feature Descriptor . 27
5.5 Measurement Areas . 28
5.6 Descriptor Matching . 28
5.7 Considering Colours . 29

6 The Implemented Methods 29

6.1 Disjoint Unifiable Sets and Union-Find . 29
6.2 Level-Sets . 31
6.3 Maximally Stable Extremal Region Detector: MSER . 32

6.3.1 Maintaining and Unifying Pixel Level-Sets . 32
6.3.2 The Main Algorithm . 33
6.3.3 Extracting Stable Regions . 33

6.4 Summed Area Tables . 47
6.5 The Measurement Areas . 47
6.6 Speeded Up Robust Feature Descriptor: SURF-128 . 50

6.6.1 Calculating the Orientation . 50
6.6.2 Calculating the Feature Descriptor Vector . 51

6.7 Feature Matching . 52

7 Suggested Implementation Improvements 54

7.1 Improvements to the MSER Detector . 54
7.2 Incorporating Multiple Detectors . 54
7.3 Improvements to the SURF Descriptor . 56
7.4 Considering Affine Measurement Areas . 56
7.5 Faster Matching . 57
7.6 Image Intensity Cross-Correlation . 57
7.7 Considering Colours . 58

8 Evaluation of the Implemented Methods 58

8.1 Criterion for Correct Feature Matches . 58
8.2 Repeatability for Detectors . 59
8.3 Location Accuracy for Detectors . 60
8.4 Recall for Descriptors . 60
8.5 1-Precision for Descriptors . 60
8.6 Explanation for the Kinds of Graphs . 61
8.7 Performance Graphs . 61
8.8 Conclusions of Performance Evaluation . 82

9 Future Work 82

10 Conclusions 83

3

11 Acknowledgements 84

12 Appendices 84

12.1 A: Additional Implementation Details . 84
12.1.1 Summed-Area Tables . 84
12.1.2 The SURF-128 Descriptor . 85
12.1.3 Elegant, Yet Efficient, Design in Standard ML 85

12.2 B: Disjoint Unifiable Sets . 86
12.3 C: Oriented Haar-Wavelet Filter Response . 90
12.4 D: Unit-Test for Brute-Force Matching Strategies . 93
12.5 E: Log of the Execution of the Performance Evaluation 95

4

1 Reader’s Guide

This section gives is a guide to the reader, particularly for those who might prefer to skip reading parts
of the document. The document contains the following main sections:

• Introduction: An introduction to the setting for this project and to some of the terminology used
in this report

• Previous Work: A review of some previous work in this area. This part can safely be skipped,
for those familiar with the reviewed articles, but may be intensive reading for new-comers to the
field. There are no important conclusions in this section

• Conclusions of Previous Work: This section is important, for those wishing to understand the
reasons for the design. It is based on specific references and forms a basis for the analysis

• Design Analysis: The design analysis and design choices, mostly based on the experiences exposed
by previous work

• The Implemented Methods: Describes the methods, which were chosen for implementation and
which have been implemented. This section is generally not programming language specific

• Suggested Implementation Improvements: Describes possible improvements to the implemented
methods

• Evaluation of the Implemented Methods: Documents the evaluation of the implemented methods

• Future Work and Conclusions: Don’t miss it

• Appendices: The appendices contain some implementation details, which are either important or
tricky, when implementing it, but not important for the overall understanding. This also includes
design details specific to the implementation language, Standard ML

The reader is assumed to be familiar with computer algorithms and maths at a reasonable level,
particularly including linear algebra using vectors and matrices and things like computing partial deriva-
tives. It is an advantage to be familiar with image processing, computer graphics or computer vision
techniques, but most descriptions should be detailed enough that, this is not a strict requirement.

2 Introduction

This section describes the setting and terminology for this report. It also gives a general overview of
the relevant areas of technical methods and finally defines the focus of the report.

2.1 Overview of Wide-baseline Image Correspondences for Camera Registra-

tion

Finding reliable correspondences in two images of a scene is a difficult and critical step towards fully
automatic reconstruction of 3D scenes. This is especially true when we allow the images to be taken
from arbitrary viewpoints, viewed with possibly different cameras or camera settings and in different
illumination conditions. There are different ways of establishing correspondences. Two main branches

5

Figure 1: Data flow overview of the main steps for establishing a camera view relationship between
two images by image correspondences. The steps for each image individually are feature detection,
determining measurement areas and making feature descriptors. The steps involving both images
are feature matching and estimation of the camera view relationship. These steps are symbolized
by the arrows, while the result of each step are the boxes, starting from the input images.

of methods are the direct pixel based methods and the feature-based methods. This report considers
only feature based methods, which, according to the litterature, are quite robust and precise.

When the camera viewpoint positions differ significantly between the input images, the reconstruction
problem is referred to as having wide-baseline. This is as opposed to having a narrow-baseline, where
the viewpoint positions are fairly close to each other. The baseline is the line between the projection
centres of the camera viewpoints. In the narrow-baseline case, there are many properties of the input
images, which can often be exploited. For example, local image deformations can often be realistically
approximated by only translation or translation with rotation and pixel intensities can be assumed not
to change very much between images. These assumptions open op many possibilities for doing image
matching. This report aims to handle the wide-baseline case, where more generally robust models have
to be considered. For example, geometric image deformations may have to be approximated by affine
transformations, in order to get successful image matching.

The feature-based methods can be broken down into some main steps: Detecting features, computing
a descriptor for each detected feature, matching the features by using their descriptors and estimating
the relationship of the camera views between the input images from the matching feature pairs. In
between the first two steps, it is useful to consider an intermediate step of determining a measurement
area from the detected feature, where the descriptor is computed on the measurement area. This step
is often closely related to the feature detector or the descriptor and can sometimes be hard to isolate.
The sequence of these steps is illustrated as a data flow diagram in figure 1.

6

2.1.1 Feature Detection

Reliable extraction of a manageable number of potentially corresponding image elements is a necessary,
but certainly not sufficient prerequisite, for successful wide-baseline matching. We refer to such extracted
image elements as detected features. The features here could be points, lines, edges, pixel regions or
conics, such as ellipses. Other kinds of features may even be possible as well. Lines or edges will not
be considered in this report. A few good reasons are that, no fixed location exists along a line and,
according to [Hart03], lines often arise from object occlusions in the depicted scene, in which case they
are not reliable features. We shall mostly deal with acquiring points and the term interest point is
sometimes used for this. Also, we will often be associating a conic, such as a circle or an ellipse, with
the detected feature, so the methods considered also often result in a detected conic. We will also see
the term detected regions, since some of the detection methods find pixel regions, where the desired
point is obtained as the center of the detected region. The term region is generally used when detecting
a certain area of pixels and such methods are known as region based detection methods. In general,
it is usually a central feature point, which is sought, and it is often also somehow located located at a
particular scale of the image. For certain kinds of features, the term blob can be used.

2.1.2 Measurement Areas

For each detected feature, we can determine a measurement area from it. This could be a circle, an
ellipse, a box or something else, which defines the area, which we will use for computing a descriptor
for. For affine methods, areas of a fixed Euclidean shape, like rectangles or circles, are not good enough,
since their shape is not preserved under affine transformation. For scale and rotation invariant methods
however, they are commonly used.

For some methods, the step of determining a measurement area can be somewhat artifical, since it
may already be part of either the feature detection method or the feature descriptor method, possibly
even both. However, they in some sense define the interface between the method for feature detection
and the method for constructing a feature descriptor.

2.1.3 Feature Descriptors

Often, a large number, perhaps hundreds or thousands, of possibly overlapping features are obtained.
A feature descriptor, which is typically a vector, is then associated with each measurement area. This
descriptor is chosen so as to discriminate between the features. A descriptor is often an approximate
description of the image contents of the measurement area. One reason for introducing it, is to make
matching of features between images faster than comparing image contents directly. Another reason for
its use is to allow for some inaccuracies in the measurement areas, such as location, shape and noise.

2.1.4 Feature Matching

Correspondences may be established between two images of the same scene, by detecting and represent-
ing features independently in both images and then matching the features based on their descriptors.
By design, changes between features in the two images try to follow viewpoint changes, so by design,
corresponding features in the two images will have similar (ideally identical) feature descriptors. Corre-
spondences can then be more easily established. The fact that multiple features are matched helps in
making the method is robust to partial occlusions.

The matching between feature descriptors can be done in various ways. The descriptor vectors can
be brute-force pair-wise matched, using e.g. the Euclidean distance. Other distance measures or more

7

efficient, possibly approximating, ways of finding matches are also possible.

2.1.5 Camera View Relationship

The final step that we shall go through here is deriving the final relationship between the camera views.
This is usually done by finding a fundamental matrix, a homography or even just an affine mapping,
which describes a relationship between the images. A homography is a 3x3 matrix, which maps points
on a plane in one image into points on a plane in the other image. Thus, it is a relationship between
both the camera views and a plane in the scene. A fundamental matrix is also a 3x3 matrix, but it
maps a point in one image into a line in another image, where the true corresponding point in the other
image is somewhere on that line. Thus, the fundamental matrix only describes the relationship between
the camera views, independently of the scene. In this project, we shall only use homographies between
images, as a means to verify correctness of detected features. For this it is important to notice that,
they only map points, which are on a plane in the scene.

The camera relationship is typically sought as being the relationship consistent with the largest num-
ber of matched correspondences. The RANdom SAmple Consensus (RANSAC) algorithm is commonly
used here.

When considering more than two images, it is natural to start thinking of the 3D scene represented
by the images, rather than the images themselves. In this setting, relating the camera view of an image
to the rest of a 3D scene is known as camera registration. As part of determining the camera view
relationship more precisely, methods like bundle adjustment are often used.

2.1.6 Iterations of Methods and Applications

Many of the above methods can be applied in more than one iteration and some may be guided or
improved by incorporating other methods, in order to incease robustness.

The kind of methods introduced here, and the methods that we will focus on, are methods for finding
correspondences between two images, or at least a small predetermined set of images. However, many
of the same methods are also often used for other applications, such as finding matches within a larger
database of pictures, object recognition or image stitching.

2.2 Detection Accuracy and Invariance

The requirement for the detected features is that they should correspond to the same 3D element,
which gave rise to the detected feature, for different viewpoints. The shape of features from different
viewpoints is thus not fixed. The detected features should therefore adapt in shape, based on the
underlying image data, so that they are the projection of the same 3D surface patch. In particular,
consider images from two viewpoints and the geometric transformation between the images induced
by the viewpoint change. This image-to-image transformation can be applied to the detected features
between the images. Features detected after the viewpoint change should ideally be the same, modulo
noise, as those detected before the viewpoint change. Thus it should, ideally, be possible to transform
the detected features in one image into the detected features of the other image. Doing such an image-
to-image transformation of detected features in one image and comparing to the features detected in
the other image, can be used as a measure for how accurate the feature detection is. One way of
measuring this is by an overlap test, which we will see later, but not use for measuring the accuracy.
The position accuracy or location accuracy of detected features is also very important, for the estimate
of the camera viewpoint. This mostly relates to the position of the central feature point.

8

Due to these properties, detected features could be considered covariant between the images, since
they change covariantly with the viewpoint transformation. They are often referred to as invariant in
the litterature, referring to the fact that, the features are invariant to the viewpoint of the camera,
which photographed the image, in which the features are detected.

There are varying degrees of invariance to viewpoint changes. Some methods try to be invariant to
only translation, some also to scale, some also to rotation. When a method is invariant to translation,
scale and rotation, it is said to be invariant up to a similarity change. Even more refined methods can
be affinely invariant. These kinds of invariance are collectively called geometric invariance. In practice,
the invariance is only in the image plane, not according to the actual viewpoints of the cameras, so the
invariance here is far from ideal.

The image geometry is, however, not the only property of a feature detector, which may be invariant.
A detector may also be invariant to illumination changes. This is usually considered to be a one-
dimensional property, specifically changes in image intensity. The invariance may be only to the intensity
level, which is only translation invariance of intensity. It may also be invariance to both the offset and
scale of itensities, i.e. affine intensity invariance. The scale invariance of intensity is one kind of contrast
invariance.

In practice, the estimated fundamental matrix or homography between images is the closest we can
get to making an image-to-image transformation of detected features. We will use homographies for
the practical evaluation of the detector accuracy, since we have these available in the selected test image
sets. As already stated, this requires that the features, or at least most of them, lie on a plane in the
scene, which could even be the image plane itself.

2.3 Scale-Space for Feature Detectors

Several feature detection methods deal with scale-space in one way or another. This relates to the
notion that, a detected feature has a certain scale in an image. The scale-space can be considered as an
extra dimension of the image, which in some way defines the image scaled to a certain resolution. Also,
scale-space handles differences in input image resolutions and makes it possible to get the advantages
of having a higher resolution in one input image than other input images.

Many methods implement this as a pyramid of successively scaled versions of an input image, which
is known as an image pyramid. Apart from performing actual scaling of the image, the image data may
also be filtered, often with some kind of a Guassian filter, where adjusting the filter size can give a more
fine-grained set of scales, without having to explicitly represent all image resolutions in memory. Often,
scale is divided into octaves, and scales within each octave. In the case of using an image pyramid,
octaves could be the images being explicitly resized, whereas the scales within each octaves could be
handled by filter-width ajustment, when sampling image locations. The octaves can be used for making
an initial rough search for features at roughly estimated scales. The scales in between can be used for
further determining at which scale a feature is most naturally represented. Determining that a feature
has a certain scale is known as scale selection. [Cyga09] gives a good overview of scale-space, including
source code, where e.g. section 6.7.5 explains scale subdivision.

Some methods, however, handle scale-space in different ways. This can lead to less memory usage.
It may also lead to either improved performance or worse performance, depending on the nature of the
method. Trying to find image correspondences, without somehow handling scale-space, will probably
not work for realistic wide-baseline cases.

The way that some feature detectors, and actually also some feature descriptors, work, is by doing
some kind of image sampling in a local area of the image. These samples often perform some kind of
differentiation of the image data. This could be done in a simple way, e.g. by subtracting neighbouring

9

Figure 2: Differentiation scale and integration scale are used by some methods. Differentiation
scale is illustrated by the radii of the small circles, integration scale by the radius of the large circle

image intensities of an image, where this image may be an input image scaled down to a certain
resolution, e.g. by using one of the images of an image pyramid. It could also be done by more refined
methods, such as Laplacian filtering, which is differentiation of image intensities with the second order
partial derivatives in the x and y directions of the image. Often, several methods are combined, where
combining Gaussian and Laplacian filteres would be one example. No matter which method is used,
the scale at which the differentiation is done, can be referred to as the differentiation scale. Thus, this
generally has to do with the combined filter size and scaled image resolution, at which the differentiation
is performed.

Several differentiation samples over a local area can be combined, when trying to detect a feature or
make a feature descriptor. The size or scale of this local area can be referred to as the integration scale.
This is the scale at which the area of differentiation samples are integrated into one feature sample or
feature vector. The differentiation scale and integration scale are illustrated in figure 2.

Often, methods have the differentation scale and integration scale tightly coupled. When the scale
of a feature is determined, it is often the integration scale, which is used.

2.4 The Gaussian Filter and Discrete Image Convolution

For completeness of this presentation, we shall breifly present the Gaussian filter and discrete convolution.
The Gaussian function is the function of a statistical normal distribution, where σ is its standard

deviation. The one-dimensional Gaussian function, usually considered as being parameterized by t for

some given σ, is defined by G(t, σ) = e−
t
2

2σ2 . The two-dimensional Gaussian function is given by

G((x, y), σ) = e−
x
2
+y

2

2σ2 . These formulas can be normalized, such that their integrated area over t,
respectively volume over (x, y), is one. Normalization of the one-dimensional Gaussian is done by
scaling by 1√

2π σ
. Normalization of the two-dimensional Gaussian is done by scaling by 1

2πσ2 .

Convolution is normally done discretely, i.e. at invdividual points pixel by pixel, in a window of
limited filter size, e.g. a window of the Gaussian filter. In case of discrete convolution, as presented
here, it is the process of, for each pixel in the image P , placing the window of the filter, such that it
is centered over the pixel P of the image. Then each pixel of the filter window is multiplied by the
pixel of the image at the position where that filter pixel is placed. These pixel products are summed

10

and yield the resulting convolution value for pixel P . This convolution can be done for all pixels in an
image and stored in an output image of the same size as the input image, or it can be done on the fly
for each needed convoluted pixel. Strictly speaking, the image of the filter should be mirrored, due to
the way that convolution is defined, but since most filters are symmetric, this is normally not needed.
The Haar-wavelet filter, which we will consider later, is not symmetric, but for what we use it for, the
mirroring is not important, as long as we are consistent about it. We use the operator ⊗ to denote
convolution. Convolution can also be done at sub-pixel precision, but this will not be presented here.

2.5 Our Focus

To limit the extent of this report, we will focus on the methods for feature detection, feature descriptors
and determining the measurement areas in between. Matching features and how to incorporate this
into a full pipeline will be considered to a limited extent.

Establishing camera view relationships will not be described, except for its use in evaluating the
implemented methods. A follow-up report on this part is planned to be made. The experiments are
mainly for evaluating feature detectors and feature descriptors. In the implementation and most of the
descriptions, we will only consider two input images.

3 Previous Work

This section describes some relevant previous work, divided into subsections of feature detectors, feature
descriptors, matching strategies, comparisons of methods and general tutorials.

3.1 Feature Detectors

3.1.1 The Harris Corner and Edge Detector

The famous article [Harr88] introduces the Harris point and edge detector, which is an image filter. We
will denote two of its basic quantities as Ix and Iy, which denotes the gradients of a pixel P in the
x and y directions. Iy is calculated by taking the intensity of the pixel below P and subtracting the
intensity of the pixel above P . Ix is similar, the pixel to the right of P minus the one to the left of
P . This approximates the first order partial derivatives ∂I/∂x and ∂I/∂y in the x and y directions,
respectively. From these quantities, the Harris matrix is constructed as:

MH =

[

I2
x ⊗ G(σ) IxIy ⊗ G(σ)

IxIy ⊗ G(σ) I2
y ⊗ G(σ)

]

(1)

Here, the notation ⊗G(σ) denotes convolution with a Gaussian filter with standard deviation σ.
What is used from this matrix is particularly the trace

Tr(MH) = I2
x ⊗ G(σ) + I2

y ⊗ G(σ) (2)

and the determinant

Det(MH) = (I2
x ⊗ G(σ)) (I2

y ⊗ G(σ)) − (IxIy ⊗ G(σ))2 (3)

11

The corner response function is given as

Det(MH) − kTr(MH)2 (4)

where k should be 0.04, according to [Poll00]. This function takes on positive values at corners,
negative values at edges and is close to zero elsewhere. For most methods that we shall consider, we
are only interested in corners, not edges, i.e. where this function is positive.

3.1.2 Scale Adapted Harris Point Detector: Harris-Laplace

[Miko04] presents a scale-adapted Harris detector, which comes from previous work by the same authors.
This is based on the Harris detector, but where the partial derivatives are computed on various scales of
the image, by using Guassian filtered intensities. This detector thus uses scale-space, as was described
in the introduction in section 2.3. The partial derivatives on Gaussian filtered intensities can be denoted
Ix((x, y), σ) and Iy((x, y), σ). The size of these Gaussian filters is the differentiation scale, σD, of this
detector. The derivatives are averaged in a neighbourhood of a point, which is done by Gaussian filtering
at the integration scale. This response is computed over the entire image and for several resolutions.
They select the characteristic scale, for each point of the image, by finding maxima of the response over
the different resolutions at the same point.

They argue that, a better way of selecting scale is by using the Laplacian of Gaussians, often referred
to as LoG. The Laplacian of Gaussians (LoG) is computed as the second order partial derivatives, often
denoted Ixx, Iyy and Ixy, of Gaussian filtered image intensities. When the image intensities are Guassian
filtered, the second order partial derivatives can more explicitly be denoted Ixx((x, y), σ), Iyy((x, y), σ)
and Ixy((x, y), σ), where σ specifices the size of the Gaussian filter. The Laplacian of Gaussians at scale
σn is then defined by:

|LoG((x, y), σn)| = σ2
n|Lxx((x, y), σn) + Lyy((x, y), σn)| (5)

From the starting point of the previous scale-adapted Harris detector, they describe their combined
Harris-Laplace detector. In the Harris-Laplace detector, Harris-points are initially detected at coarse scale
changes, a factor of 1.4 between each scale. Then the scale is selected iteratively as maxima over the
Laplacian of Gaussian (LoG) over finer scale changes (factor 1.1 between each scale) until convergence.
They present a simpler algorithm for this too, which is faster to compute, but less accurate. In both
algorithms, both Harris-points and Laplacian of Gaussian (LoG) points are rejected, if the response
values are below certain thresholds. They have good illustrations of features detected by their methods.

3.1.3 Affine Adapted Harris Point Detector: Harris-Affine

In [Miko04], they present the discrepancy between views of detected features obtained with the Harris-
Laplace detector, which does not have affine invariance. They also present the general second moment
matrix for affine scale-space. They derive the affine relationship between the second moment matrix
of detected feature neighbourhoods and show that, this relationship transforms corresponding feature
neighbourhoods into each other, except for an orthogonal transformation, i.e. a rotation or a mirror
transform. They show how to determine the anisotropy by the eigenvalues of the second moment matrix
and how this relates to differentiation and integration scales, as previously described in the introduction
in section 2.3.

12

They describe their Harris-Affine interest point detector. They describe all elements of their al-
gorithm very well. It is an iterative algorithm, which starts be detecting initial feature points by the
multi-scale Harris detector. The detected feature points are then iteratively refined, by iterating the
following five steps: 1) warp the local image window, according to the shape-adaptation matrix, 2)
select integration scale as the local maximum of the normalized Laplacian, 3) select differentiation scale
from the integration scale and the ratio between the smallest and largest eigenvalues, 4) detect spatial
localization, by the maximum of the Harris measure and 5) compute the second moment matrix for
updating the shape-adaptation matrix. They have good illustrations of this method. They afterwards
detect if several of the initial feature points have converged to the same feature point and use only one
of these final points.

3.1.4 Scale Adapted Harris Points and Adaptive Non-Maximum Suppression (ANMS)
for the Multi-Scale Oriented Patches (MOPS) Method for Image Stitching; a
Method Resulting in a Very Long Section Headline

The article [Brow04] use Harris points and a Gaussian image pyramid with a subsampling rate s = 2
and pyramid smoothing width σp = 1.0. Features are extracted at each level of the pyramid. They
use σi = 1.5 as integration scale and σd = 1.0 as differentiation scale. Their features are are defined
where the corner strength function has a local maximum in a 3x3 neighbourhood and has a value
above the threshold t = 10.0. They use 2D quadratic fitting to the corner strength function in a 3x3
neighbourhood for subpixel accuracy.

They introduce an adaptive non-maximum suppression algorithm (ANMS), which extracts a fixed
number of feature points, which are spatially well-distributed over the image. This is conceptually done
by only returning maxima within a neighbourhood of radius r, where r starts being 0 and is increased,
until the desired number of features is obtained. In practice, they do this in a more efficient way, since
the feature points obtained in this way form an ordered list. They also make this even more robust by
by adding criteria for when neighbours are significantly stronger than their neigbours.

They show experimentally that this adaptive non-maximum suppression (ANMS) improves the spatial
distribution of features and that, on a large database of features, this gives fewer dropped image matches
for panoramic images, which is important for image stitching applications.

They also evaluate the repeatability of their detector, showing that their Harris points are only
accurate up to 1 − 3 pixels distance. A few remarks, which the authors did not make, is that, this is
for a global image homography, which does not take perspective into account. This is important, if the
images are not taken from the same camera location, and the images don’t appear to all be taken from
the same location, which could explain this inaccuracy.

3.1.5 Hessian-Laplace and Hessian-Affine

[Miko05] uses the Harris-Laplace and Harris-Affine detectors already described. They also use a Hessian-
Laplace detector, which uses maxima of the Hessian determinant to locate the position of points, rather
than by the Harris detector, as Harris-Laplace does. Both Hessian-Laplace and Harris-Laplace select
scale by using the Laplacian of Gaussians (LoG). They also use a Hessian-Affine detector, which is also
similar to Harris-Affine, except for, once again, using the Hessian determinant to locate the position of
points, rather than Harris points. The basic Hessian matrix is given by:

H =

[

Ixx Ixy

Ixy Iyy

]

(6)

13

Ixx, Iyy and Ixy are the second order derivatives, as ealier. The same considerations of convolution
with a Gaussian and differentiation scale, integration scale and scale-space also apply here, as for the
previously described cases of the Harris-based detectors. The trace and determinant of the Hessian,
when not considering scale-space, are thus given by:

Tr(H) = Ixx + Iyy (7)

Det(H) = IxxIyy − (Ixy)
2 (8)

Notice here that, the trace of the Hessian corresponds to the Laplacian.

3.1.6 Fast Hessian Detector

[BayH06] introduces a new ”Fast-Hessian” feature detector and gives a good overview of some detectors
that it resembles. The Fast Hessian detector uses an approximated determinant of the Hessian for
both scale and position detection. Their approximation is made by special 9x9 filters (containing
a configuration of two negative boxes and two positive boxes), which mimic the Hessian with scale
σ = 1.2. They show how they can support scale directly, by scaling their filters, without having to
iteratively filter images with Gaussians, as done in a scale-space image pyramid. They make sure that,
the method that they use for this is automatically scale-normalized. They detect their features, which
they call interest points, by a non-maximum suppression algorithm (see e.g. [Neub06]) in a 3x3x3
neighbourhood over the image and in scale. They interpolate the detected maxima over the image and
in scale as in [Brow02]. This is particularly important for this method, since there are large differences
in scale between particularly the first layers of every octave in their scale-space.

3.1.7 Maximally Stable Extremal Regions: MSER

[Mata02] gives a good overview of the image correspondence problem. They introduce a region detection
method for finding Maximally Stable Extremal Regions (MSER). Their method has near linear time-
complexity and is fast in practice. The regions can be described as upper or lower level sets, whose
rate of change of the boundary, as a function of the level threshold, has a local minimum between
neighbouring levels. The regions are stable, are detected without image smoothing and detect both fine
and large structure. They are invariant to affine transformation of image intensities, such as contrast
changes, and are covariant (between images) to adjacency preserving (continuous) transformation of
the image coordinates.

The method works by sorting pixels by intensity, which can be done in linear time, by using binsort,
if the range of image intensity values is small, such as in an 8-bit intensity image. Then, two passes of
inserting pixels into the image are done; in decreasing, respectively increasing, order of image intensity.
During these two passes, a list of connected components and their areas is maintained, which can be
done very efficiently with a union-find algorithm. This results in two data structures, each consisting of
the areas of the connected components as a function of image intensity. The intensity levels, which are
local minima of the rate of change of the area function, are selected as thresholds, for producing the
maximally stable extremal regions.

3.1.8 Fast Level Set Transform: FLST

[Oshe06] is a general text book on level set methods, particularly for computer vision, medical imaging
and graphics. Chapter 7, particularly section 7.3.1, with theoretical background and proofs in the

14

sections preceding it, presents a method called the Fast Level Set Transform (FLST), about which
more information can be found in [Mona00] and, more recently, in the preprint of the book [Case08],
particularly chapters 6 and 7. Chapter 15 of [Oshe06] explains image matching using the Fast Level Set
Transform (FLST) with moments up to second order as region descriptors, where a similar matching
algorithm is described in [Mona99]. It should be noted that, the above four references have some
discrepancies as to how upper versus lower level sets are defined, which we will sort out later in this
report, in section 6.2. Some of the above references also describe a related method, the Fast Level Lines
Transform (FLLT).

The Fast Level Set Transform (FLST) works by segmenting the image into a hierarchical set of
regions, called shapes, which gives a complete and non-redundant representation of the image. This is
quite similar to the Maximally Stable Extremal Regions (MSER) method, except that, MSER tries to
extract only stable regions, whereas FLST extracts regions for the entire image and forms a hierarchy
of shapes. Indeed, chapter 8, particularly section 8.4, of the preprint [Case08] shows how to extract
various kinds of Maximally Stable Extremal Regions from the FLST representation, by using different
criteria, as well as methods for finding the most meaningful edges.

The FLST algorithm has many details, but works by growing regions (shapes) in a bottom-up fashion
and maintaining counts of holes in the regions. The hole counts are maintained by Euler characteristics,
calculated by tracking changes in region boundary configurations, and are used for merging detected
shape subtrees into one final tree in the end. The algorithm can be implemented both by handling
images as pixels of discrete intensities and by handling images as a continuous surface of intensities. In
the latter case, shapes are extracted, as a final step, with any desired intensity discretization threshold,
e.g. using 100 intensity levels.

Apart from being useful as a region detector, FLST also gives a contrast invariant representation of
the entire image and chapter 7 of the book [Oshe06] gives a recipe for doing edge-preserving removal
of image noise by Total Variation Minimization.

3.1.9 Edge Based Regions: EBR

[Tuyt99] presents a feature detector, which works by first finding corner points, then following two edges
from such a corner point and finally fitting a parallelogram to the corner and the edges, in order to get
a local affinely invariant image region. Their corner points are found with the Harris detector. They
have a method for tracing edges from such a point, which includes a criterion for when to stop tracing
the edges. This method is referred to as Edge Based Regions (EBR) in [Miko06], where it is compared
to other methods. Their application in this article is database content retrival.

3.1.10 Intensity Based Regions: IBR

[Tuyt00] presents a feature detector, which they suggest to combine with the Edge Based Regions
(EBR) method from [Tuyt99]. Their application here is wide-baseline stereo image matching. This
method is somewhat similar to the Maximally Stable Extremal Region (MSER) detector, but predates it.
They detect their regions by first finding intensity maxima with a non-maximum suppression algorithm.
[Neub06] describes efficient ways of implementing this. From these intensity maxima, they trace out
lines in a circle from that point, to establish a region. They have a criterion for when to stop tracing each
line, based on maxima of image intensity changes. They fit an ellipse onto the traced area and double
the size of it, for use as their measurement area. This method is referred to as Intensity Based Regions
(IBR) in [Miko06], where it is compared to other methods. The kinds of features detected in this article
(IBR) are thus quite different from the kinds of features detected in [Tuyt99] (EBR). They suggest that,

15

combining several such feature detectors is a good idea, since it yields more correspondences and since
it can enable a system to detect features in a wider range of images.

3.1.11 Other Detectors

[Lowe04] describes how to compute scale-space with Gaussian kernels and how to compute Differences
of Gaussians (DoG) for octaves of scale-space by image subtraction. It is argued how Differences of
Guassians (DoG) approximate the scale-normalized Laplacian of Gaussians (LoG). Methods like these are
also thoroughly described with source code examples in chapter 5 of [Cyga09]. For feature detection,
they use Differences of Gaussians. Detailed location, scale and ratio of principal curvatures of each
feature is fitted to the nearby image data with a 3D quadratic function. This fitting gives a substantial
improvement to matching and stability and can be used to discard unstable features with either low
contrast or a high ratio between the principal curvatures.

3.2 Feature Descriptors

3.2.1 Scale-Invariant Feature Transform: SIFT

[Lowe04] describes a method known as the Scale Invariant Feature Transform (SIFT), where they use
Differences of Gaussians (DoG) with fitted location, scale and ratio of principal curvatures for feature
detection, as described earlier. For the descriptor, an orientation for each feature is built from a histogram
of gradient orientations, weighted by gradient magnitude. If the histogram of a detected feature contains
multiple peaks of orientations, several features are created, which contributes significantly to the stability
of matching. Their descriptor consists of a 4x4 array of 8-direction orientation histograms. This array is
weighted with a Gaussian function, to compensate for sudden changes in position. The feature vector is
modified by two normalization steps, in order to make it invariant to changes in illumination, especially
contrast. This feature vector has 128 dimensions. Different feature vector sizes have been experimentally
tested against a database of 40.000 detected features, taken from 32 images, and this feature vector
size gave the best results. Reliable matching for up to 50 degrees of viewpoint change is achieved.
It is argued that, affine matching is often not worthwhile, since it is usually not the limiting factor
for 3D objects and since the stability towards small affine changes is decreased. For affine invariance,
they recommend the approach by [Prit03] of using SIFT features for 4 affine transformed versions of
the training image. Feature distinctiveness is shown to be almost unlatered with the growth of their
database for object recognition, meaning that the features are highly distinctive in general.

3.2.2 Speeded Up Robust Features: SURF

[BayH06] introduce their Speeded Up Robust Features (SURF) descriptor, which they use with their
Fast Hessian detector, as described earlier. The descriptor comes in two variants, depending on whether
rotation invariance is desired or not. The rotation invariant descriptor first assigns an orientation to the
descriptor and then defines the descriptor within an oriented square. The other version, called U-SURF,
for Upright-SURF, which is not rotation invariant, simply skips the orientation assignment phase.

The orientation assignment for the descriptor starts by calculating Haar-wavelet responses around
the detected feature. This calculation is done at the detected scale of the feature and the responses are
weighted by a Gaussian, centered at the feature point. The responses are represented as vectors, which
are used to find a dominant orientation.

When they have defined a square for the orientation frame, by either orientation assignment or an
upright orientation, the descriptor is defined within this oriented square. This is done by dividing it

16

regularly into 4x4 subregions and for each subregion, compute simple features at 5x5 regularly spaced
sample points. For each such sample point, they compute 4 descriptor values. These are the sums of
Haar-wavelet responses and sums of absolute Haar-wavelet responses, both in the x- and y-directions
of the oriented frame. This yields a 64-dimensional descriptor, which is made contrast invariant by
normalizing it into a unit-vector. They have experimented with alternatives of this descriptor and found
that this particular one gives the best results.

They also define a SURF-36 descriptor, using only 3x3 subregions. This is faster to compute and
performs only slightly worse. Finally, they define a SURF-128 descriptor, which divides the sums of the
wavelet responses into twice as many sums, making it just slightly slower to compute, but also slower
to match, due to the higher dimensionality. It performs better than the regular SURF descriptor and
has the same number of dimensions as SIFT.

For the matching phase, they introduce indexing by the sign of the Laplacian, which gives a slight
performance increase. They evaluate their descriptors and compare them with other well-performing
descriptors, showing that their descriptor outperforms the others. They also evaluate their Fast Hessian
detector and compare that with other well-performing detectors, where their performance is good. Which
feature detector is best, seems to depend on image content. Their detector and descriptors are clearly
the fastest to compute though.

3.2.3 Multi-Scale Oriented Patches: MOPS

In [Brow04], they determine an orientation for their detected feature points from the smoothed gradient
around the point. The use the integration scale σo = 4.5 to make the orientation vary smoothly accross
the image, for greater robustness.

Their feature descriptor is a locally oriented patch around the feature point, sampled at 8x8 pixels
at scale 5s, where s is presumably the scale of the detected feature. They have verified experimentally
that, 5s is a good sampling scale. They normalize the patch, to get affine intensity invariance, and then
transform it with the Haar-wavelet transform. The first three non-zero Haar-wavelet coefficients, c1, c2

and c3, are used in an indexing strategy.

3.2.4 Other Descriptors

[Tuyt00] use an 18-dimensional descriptor of second order generalized colour moments. [Oshe06] Chapter
15 also uses second order moments as a descriptor, but without taking colour into account.

[Mata02] use rotational invariants as descriptors, based on complex moments, where they diagonalize
the regions’ covariance matrix. This is an affine method. They have verified that, rotational and affinely
invariant generalized colour moments gave similar results. On their own, these affine invariants failed
on problems with a large scale change.

[Miko04] uses Gaussian derivatives on their detected affine area, up to 4th order, as their 12-
dimensional descriptor. They divide the higher-order derivatives by the 1st order derivatives, to achieve
affine invariance to intensity changes. They use the average gradient orientation to orient the descriptor,
in order to get rotation invariance.

[Miko05] introduces the Gradient Location and Orientation Histogram (GLOH), which extends the
SIFT descriptor by changing the location grid and using Principal Component Analysis (PCA) to reduce
its size.

There appears to be at least two general ways of handling rotation invariance: 1) try to find and
assign an orientation for the descriptor, thus using the orientation as part of the descriptor or 2) try
to ignore the rotational aspect. Methods like SIFT and SURF use the first strategy, where as e.g. a

17

method like SPIN, which we will not go through, uses the second. The first strategy intuitively seems
more powerful and distinctive, which is in some sense confirmed by comparisons of methods, as in e.g.
[Miko05].

3.3 Feature Matching Strategies

In [Miko04], they match each descriptor in one image by the Mahalanobis distance measure, in order to
find its most similar descriptor match in the other image. They accept this as an initial match, if the
distance between the descriptors is below a certain threshold. After this, they reject low score matches
by cross-correlation of affine-normalized image patches. They select inliers among the correspondences
by RANSAC. They estimate either a homography or a fundamental matrix, where a model selection
algorithm can be used to decide which transformation is the most appropriate.

[Dufo02] propose establishing a frame in a low-resolution image, which matches a high-resolution
image. The image points are related with a homography, which is specialized into having only a
similarity factor, rotation and translation. This is used for correlating points, where the correlation
is minimized with non-linear least squares optimization. They do feature-based matching and derive
the Harris feature point detection and auto-correlation matrices between features. They desribe and
evaluate how scale-space is handled. The matching is done with one scale being separately matched to
8 different scales. They use differential invariants as descriptor vectors and match with the Mahalanobis
distance measure. They describe how to match a collection of points in a neighbourhood, which are
consistent with a similarty transform. This consists of: 1) match centre and one other point, 2) find the
similarity, 3) verify other points’ consistency and 4) repeat as a depth-first tree search. Each scale-space
representation is matched, in order to find the approximate difference in scale. RANSAC is used for
finding inliers and rejecting outliers. They show experiments of matching at several scales. They also
examplify that, it works for differing viewpoints as well. In particular, they support finding either an
affine transform, a projective transform (a plane homography) or epipolar geometry (a fundamental
matrix).

The application in [Brow04] is image stitching, which may not be directly comparable to to image
matching, but the methods are still relevant. Feature matching is done by an approximate nearest
neighbour algorithm, based on an indexing scheme of the first three Haar-wavelet coefficients: ∂I

∂x
,

∂I
∂y

and ∂2I
∂x∂y

. They distribute these coefficients into a 3-dimensional bin-array with 10 bins in each
dimension, thus covering ±nσ = 3 standard deviations from the mean of those dimensions. Then,
outliers are removed, based on noise statistics of correct versus incorrect matches. Finally, RANSAC is
applied for geometric constraints and remaining outlier rejection. They found that, nearest neighbour
neighbour thresholding is inferiour to nearest and second nearest neighbour ratio thresholding. They also
found that, the ratio between the nearest neighbour and the average of of all second nearest neighours in
all images, is an even better criterion. They successfully tested their method on hundreds of panoramic
images for stitching.

In [Lowe04], they show the application of their methods to object recognition. They use nearest
neighbour matching and show that, the ratio between the nearest neighbour and the second-nearest
neighbour can be used to filter out unreliable matches, if these two are close to each other. However,
their results on this is somewhat specific to object recognition, since they only consider potential second-
nearest neighbours from a different object than the nearest neighbour. They describe a way to do efficient
approximate nearest neighbour search for a large database of features. They also describe how to find
clusters of features with the Hough transform, which allows for affine transformation estimation, which
can be done with only 3 features. The affine transform between images is determined by iterations of least
squares minimization, outlier filtering and top-down addition of possible matches. They identify clusters

18

of at least 3 features agreeing on object and pose, before attempting to match features. Matching
examples are made, where a priori known objects can be efficiently recognized, despite background
clutter, extensive occlusion, illumination changes and viewpoint changes.

In [Mata02], they perform robust matching, by comparing each region of an image to k regions in
the other image and then using a voting scheme. They set k to 1% of the total number of regions in the
image. They use 216 invariants at each scale, i.e. 864 invariants in total, since they select measurement
areas at four different scales of their detected regions, at factors of 1, 1.5, 2 and 3 times the convex
hull of the detected regions. The invariant description is used as a preliminary test. The final selection
of tentative correspondences is based on image intensity correlation. Epipolar geometry is estimated by
using RANSAC on the centres of gravity of the detected regions. They improve on the precision, by
pruning correspondences with cross-correspondences and then applying RANSAC again with a narrow
threshold. Detected region pairs, whose convex hull are consistent with the epipolar geometry, are added
to the RANSAC inliers. The final epipolar geometry is estimated linearly by the 8-point algorithm. This
gives a precision with a distance of less than 0.1 pixel from the epipolar line. They have experiments
showing success for several difficult cases, including some from other work.

In [Oshe06] in chapter 15 and in [Mona99], they also use a voting scheme for their matching.

3.4 Work Comparing Methods

[Miko04] evaluate their Harris-Laplace and Harris-Affine feature detectors and compare them with some
other feature detectors: Differences of Gaussians (DoG), Laplacian, Gradient and Hessian. They describe
their repeatability criterion and their error thresholds for their evaluation. The evaluate for scale changes,
where their comparison is with all of the above methods. They also evaluate affine invariance, but only
for their own two detectors and for Differences of Gaussians (DoG) and another method, referred to as
Harris-AffineRegion. They also evaluate the location accuracy for those four detectors. They mention a
0.5 percent discrepancy in the number of detected features, due to using accelerated recursive Gaussian
filtering. They also present matching results, where Harris points and even multi-scale Harris points
are not good enough for RANSAC to succeed. They show successful matching with Harris-Laplace and
Harris-Affine, where the former is the most effective for scale changes and the latter the most effective
for viewpoint changes. They also show a failure case, which seems to be mostly due to using poor
descriptors; 12-dimensions of Gaussian derivitives up to 4th order.

[Miko05] makes a thorough comparison between several feature descriptors. The descriptors they
consider are: GLOH, a contribution of that article, SIFT, PCA-SIFT, SPIN, gradient moments, cross
correlation, complex filters, shape context, differential invariants and steerable filters. Some of these
are lower dimensional and some are higher dimensional (FIXME: Specify which). These methods are
considered for the follwing region detection methods: Harris points, Harris-Laplace, Hessian-Laplace,
Harris-affine and Hessian-affine. They compare the discriptors accross different matching strategies:
Thresholding, nearest neighbour matching and nearest neighbour distance matching. The comparisons
are made on an image data set, which contains differences in rotation, scale, viewpoint, illumination,
blur and JPEG compression, with many of these differences comparable for both structured and textured
scenes. This data set is available on http://www.robots.ox.ac.uk/~vgg/research/affine.

[Miko06] compares different affine region detectors on the same image data set as in [Miko05], which
they aim to establish as reference data for comparison between methods. They compare the detectors:
Harris-affine, Hessian-affine, maximally stable extremal regions (MSER) [Mata02], an intensity based
region detector (IBR) [Tuyt00], an edge based region detector (EBR) [Tuyt99] and Salient regions. They
fit ellipses, using second order moments, around the detected regions for all methods and use that as their
distinguished region, even though fitting ellipses is normally not part of the MSER and EBR detectors.

19

The detectors Harris-affine, Hessian-affine and MSER mostly detect small regions, whereas IBR, EBR
and Salient regions detect larger regions. The performance of the region detectors are compared by
overlap tests, where they evaluate the performance parameters: repeatability and accuracy. The also
test region matching with the SIFT descriptor, where they evaluate the parameters: matching score and
number of correct matches. They also investigate, by separate tests, how changing some of the fixed
parameters of the tests affect the performance, thereby showing that the choice of their parameters are
sensible.

3.5 General Presentations and Tutorials

[Cyga09] is a general text book on computer vision and as such, covers a wide range of relevant topics.
Among other things, it describes methods based on blurring and scaling images, e.g. to form an image
pyramid for handling scale-space. For this, it analyses and compares various methods, such as Laplacians
of Gaussians (LoG) and Differences of Gaussians (DoG) in detail. It generally covers many details of the
basic methods for image analysis and feature detection, but it falls short on covering the more modern
feature detectors and descriptors, which are presented in this report. It also describes geometric and
camera registration methods and gives an overview of distance measures and many other things. It is
quite focused on narrow-baseline correspondences and dense matching methods. Many of the described
methods include source code examples.

[Poll00] is a book made as notes for a course, which describes the entire computer vision process
for going from input images to obtaining a 3D model from the images. It uses a pipeline based on
feature matching and supporting automatic camera calibration. It contains descriptions of the many
methods needed along the way and gives a good overview of the process, but does not try to compare
many different approaches, although it does present some possible choices. For feature detection and
descriptors, it (only) describes Harris points, simple image intensity cross-correlation and the edge based
region detector (EBR) described in [Tuyt99]. It has extensive descriptions of geometric methods for
camera registration and camera self-calibration.

[Hart03] is a very thorough book on the geometry and methods used and needed for computer
vision, particularly projective geometry and camera registration for multiple views. This book is highly
recommended for its treatment of these subjects and is particularly useful as a reference book. This
book is, however, not very concerned about image processing, feature detection or feature descriptors.

[Szel06] is a tutorial on image alignment and stitching, which also present and use many of the
same methods, which are being reviewed in this report. It describes, or at least refers to, both direct
pixel based methods and feature based methods for finding image correspondences. The tutorial also
describes some methods for camera registrations, including global camera registration, for using more
than two images for camera registration. The application focused on in the tutorial is image alignment
for stitching, so some of its general conclusions may not be the same in the context of this report.

4 Conclusions of Previous Work

This is a compilation of some important conclusions, drawn in previous work. Many of these were not
part of the previous section. This forms a solid basis for choosing between and combining methods.

4.1 Conclusions regarding the Contents of Input Images

• Viewpoint changes is the hardest image transformation to deal with, among the ones considered
here, followed by scale changes. This applies to both detectors and descriptors ([Miko06] section

20

5.2 and [Miko05] section 4.2). [Dufo02] achieves matching between images, which differ in scale
by a factor of up to 6, where their method is specialized for handling large scale changes

• Texture reduce detector repeatability ([Miko06] section 4.2) and reduce the matching scores
significantly (possibly due to repeated content) ([Miko06] section 5.2 and [Miko05] section 4.2)

• Rotation changes do not affect most descriptors ([Miko05] section 4.3)

• Blurry images degrade the performance of most descriptors, since they are not robust to this
kind of transformation, more so for the Harris-affine detector than the Hessian-affine detector
([Miko05] section 4.4). However, most detectors handle this quite well, with MSER being the
worst ([Miko06] section 5.2)

• JPEG compression degrades performance of detectors, but less than blur and mostly at more
extreme compression rates ([Miko06] section 5.2). It degrades descriptor performance, less than
for blur, but more than for rotation and scale changes on structured scenes ([Miko05] section 4.5)

• Illumination changes degrades descriptor performance, particularly if the methods do not try to
compensate for such changes by e.g. intensity normalization ([Miko05] section 4.6). Detectors
are generally quite robust to this kind of change ([Miko06] section 5.2)

4.2 Conclusions regarding Direct Pixel-Based Methods versus Feature-Based

Methods

• Section 4.4 in [Szel06] describes some trade-offs between direct pixel-based methods and feature-
based methods, which, however, is meant for the application of image alignment and stitching.
It is argued that, some of the older feature-based methods were less impressive than the direct
methods, at the time that those methods were invented. It is also argued that, the more recent
feature-based methods are very robust and can handle many difficult cases, some of which may
even be hard for direct approaches. Our focus is on feature-based methods, so direct methods
will not be investigated any further

4.3 Conclusions regarding Feature Detection

• Detection results generally depend on the type of scene, where some detectors perform better on
certain types of scenes, whereas other detectors for other scene types, illustrating that combining
detection methods would be a good idea (the introduction and sections 4.2 and 6 in [Miko06], the
conclusion in [Lowe04] and [Tuyt00]). The differing performances between the detectors compared
in [BayH06], depending on the image content, also suggests that combining detection methods
would be useful

• Feature detectors handling affine invariance can generally handle larger changes in viewing angle,
but this may come at a cost of their location accuracy and their ability to handle e.g. large
scale-changes (section 4.1 in [Miko04]). It is argued in [Lowe04] that, affine matching is often not
worthwhile, since it is usually not the limiting factor for 3D objects and since the stability towards
small affine changes is decreased. They claim to handle viewpoint changes up to 50 degrees
reliably. This might, however, be achieved partly by their method estimating the affine transform
by using clusters of 3 features (see below). For affine invariance, they recommend the approach by
[Prit03] of using SIFT features for 4 affine transformed versions of the training image. A similar

21

way, but with 20 projectively transformed versions of the image, is suggested in section 15.7.4 of
[Oshe06]

• In [Lowe04], they identify clusters of at least 3 features agreeing on object and pose, as a way of
estimating the affine transformation, before attempting to match features

• Lower feature density (i.e. number of detected regions per image area) usually means, that
the detected features are more stable, which usually increases performance, by giving a higher
repeatability (section 4 in [Miko06]). It is also argued at the end of section 5.2 in [Miko06] that,
a good detector with a tight threshold should result almost exclusively in correct matches

• Increasing the size of the measurement area by some factor of the detected feature increases the
descriminative power of a detector, where a factor of 3, or possibly 2, is shown to be a sensible
scaling factor in section 5.1 in [Miko06]. In section 3 of [Mata02], they select measurement areas
of several size factors of the detected feature: 1, 1.5, 2 and 3

• Increasing the size of the measurement area generally increases the overlap in overlap tests, giving
a false sense of success, which should be compensated for in such tests (section 4 in [Miko06])

• Among the region detectors compared in [Miko06], MSER and Hessian-affine generally performs
best, except that the performance of MSER decreases significantly for blurry images ([Miko06]
section 4.2). Hessian-affine and Harris-affine are however found to be less discriminating detectors
than some of the others ([Miko06] section 5.2). MSER and IBR generally performs best in the
presence of homogenious regions with distictive boundaries (section 6 in [Miko06]). Hessian-
affine and Harris affine generally provide more regions, which is useful for scenes with clutter and
occlusions (section 6 in [Miko06]). Salient regions generally performs the worst, for this application

• Hessian feature detectors are slightly better than Harris feature detectors, due to their higher
precision, according to [Miko05]. Hessian-affine is also shown to generally outperform Harris-
affine in section 4.2 of [Miko06]. This is also mentioned in section 2 of [BayH06]

• MSER generally outperforms IBR (section 4.2 in [Miko06])

• Among the feature detectors compared in [Miko06], MSER is the most robust for illumination
changes, but all the considered detectors are generally robust for such changes (section 4.2 in
[Miko06])

• According to section 4.1 in [Miko04], scale-changes are handled best by their Harris-Laplace
detector, followed by the Hessian detector and then their Harris-Affine detector, among those
three methods. The performance of Harris-Affine, however, degrades with increasing differences
in scale, where it is eventually outperformed by Laplacian and Differences of Gaussians (DoG).
The location accuracy is is lower for their simplified Harris-Laplace than their full version of
Harris-Laplace

• According to section 4.1 in [Miko04], smaller viewpoint changes below 40 degrees are handled
best by the Harris-Laplace method, but it gets outperformed by Harris-Affine above 40 degrees.
The location accuracy is also best for Harris-Laplace below 40 degrees of viewpoint change, but
is outperformed by Harris-Affine above 40 degrees

• According to section 5.2 in [Miko04], Harris points or even multi-scale Harris points are not good
enough for RANSAC to succeed, but Harris-Laplace and Harris-Affine are

22

• In [Brow04] they show experimentally that, their adaptive non-maximum suppression (ANMS) for
their multi-scale Harris points improves the spatial distribution of features and that, on a large
database of features, this gives fewer dropped image matches for panoramic images, which is
important for image stitching applications

• It is argued in [Lowe04] that, Differences of Guassians (DoG) approximate the scale-normalized
Laplacian of Gaussian, denoted σ2∇2G, and that normalization by σ2 is required for true scale-
invariance

• [Lowe04] section 3 argues (by reference to [Miko02]) that, the maxima and minima of σ2∇2G
produce the most stable image features, among methods such as gradient, Hessian or Harris
corner function. However, extrema which are close together are quite unstable to small image
perturbations ([Lowe04] section 3.1) and it is experimentally shown that, sampling 3 scales per
octave gives the highest repeatability (section 3.2 in [Lowe04]). It is also experimentally shown in
section 3.3 of [Lowe04] that, a Gaussian smoothing by a factor of 1.6, before constructing each
scale-space octave, gives close to optimal repeatability, and this is the same factor, which is proven
to be theoretically optimal in [Cyga09]. Section 3.3 in [Lowe04] also argues for the creation of an
extra scale-space octive, by doubling the resolution of the input image

• In section 3 of [BayH06], it is mentioned that, Guassians are optimal for scale-space analysis,
with reference to [Koen84]. However, they also argue that, in practice, this is overrated, since
1) in practice, the filters need to be cropped, 2) aliasing still occurs with Guassian filters when
subsampling images and 3) new structures can appear when going to lower resolutions in the 2D
case, even though they can’t in the 1D case

• The Fast Hessian detector, like Hessian-Laplace, uses the trace of the Hessian matrix for scale-
selection. In section 2 of [BayH06] they argue that, using its determinant instead of its trace (the
Laplacian) seems advantageus, since it is less triggered by elongated or ill-localized structures

• It is not obvious which of the detection methods Fast Hessian, Differences of Guassians, Hessian-
Laplace and Harris-Laplace, which are compared in [BayH06], is the best performing. It depends
on image contents and all perform well, but for example, Harris-Laplace is never seen to perform
the best in those comparisons

• Computational speed: Among the region detectors compared in [Miko06], Salient regions is com-
putationally very slow and EBR is fairly slow as well, while the other methods are quite fast, with
MSER being the fastest. The detectors Hessian-Laplace, Harris-Laplace, Differences of Guassians
and Fast Hessian are all fast in [BayH06], with Fast Hessian clearly being the fastest, Differences
of Guassians next, Hessian-Laplace third and Harris-Laplace clearly being the worst. In [Miko04],
Harris-Affine is the slowest to compute, but a faster algorithm is available, at the expense of
its detection performance. The detectors Differences of Gaussians and Hessian are fast in this
comparison

4.4 Conclusions regarding Feature Descriptors

• The general strategy of finding and assigning and orientation to a feature for rotation invariance
(as in e.g. SIFT and SURF) intuitively seems more powerful and distinctive, than disregarding
orientation dependent data (as in e.g. SPIN), which is in some sense confirmed by comparisons
of methods, as in e.g. [Miko05]

23

• Disambiguating matches on descriptors alone is not sufficient and some additional methods of
filtering out regions is needed. Methods for this could be geometric filtering based on local
spatial arrangement of the regions or on multiple view geometric relations (section 6 [Miko06]).
[Lowe04] gives some specific methods for this. Another important way is doing image intensity
cross-correlation. The cross-correlation is often done on normalized (e.g. with respect to affinity,
scale, rotation) image patches (e.g. [Miko04], [Mata02] section 3 and [Tuyt00] section 3.2)

• Simple (i.e. unnormalized) cross-correlation of intensities as a descriptor gives unstable results,
according to [Miko05]

• Among the descriptors compared in [Miko05]: GLOH and SIFT performs best, demonstrating the
robustness of the SIFT descriptor. Shape context also performs well, but less good for textured
scenes or when edges are unreliable. Gradient moments and steerable filters are best among the
lower dimensional descriptors. Among the least efficient methods is differential invariants

• [BayH06] compares some of the well-performing descriptors and they found out that, the SURF
descriptor, particularly SURF-128, outperforms the descriptors GLOH, SIFT and PCA-SIFT. They
argue that, GLOH is more distinctive than SIFT, but also computationally more expensive. They
also argue that, PCA-SIFT has lower dimension than SIFT, but is also less distinctive. Their
comparisons are not with the affine invariant versions of the descriptors, so these results are not
directly comparable to [Miko05]

4.5 Conclusions regarding Feature Matching

• Nearest neighbour based matching gives higher precision than threshold based matching, accord-
ing to [Miko05]. SIFT gives relatively better results if nearest neighbour distance is used for
thresholding, according to [Miko05]. In [Lowe04], they demonstrate that, the success of nearest
neighbour matching decreases only slowly with the increase in size of a large database of features
for object recognition

• [Lowe04] show that, the ratio between the nearest neighbour and the second-nearest neighbour
can be used to filter out unreliable matches, if these two are close to each other. They found that,
accepting only matches with this ratio being 0.8 or less gives good results. However, their results
on this is somewhat specific to object recognition, since they only consider potential second-
nearest neighbours from a different object than the nearest neighbour. In [BayH06], SURF and
particularly SURF-128 performs best, out of the evaluated descriptors. This is for both similarity
based matching and nearest neighbour to second nearest neighbour ratio matching. Nearest
neighbour to second nearest neighbour ratio matching performs best ([BayH06] figure 4 and
section 5) and they use the ratio threshold 0.7

• [Brow04] (section 5) found that, nearest neighbour thresholding is inferior to nearest to second
nearest neighbour ratio thresholding. They also found that, the ratio between the nearest neigh-
bour and the average of of all second neighours in all images, is an even better criterion, which
eliminates 80 percent of the false matches, at the cost of less than 10 percent correct matches
being lost

• Many methods use some kind of indexing step for approximate matching, in order to speed up the
matching. E.g. in [BayH06], they introduce indexing by the sign of the Laplacian and in [Mata02],

24

using lower versus upper level sets (which they call positive and negative regions) achieves some-
thing similar. In section 6 in [Brow04], the first three non-zero Haar-wavelet coefficients are used
in an indexing strategy. The approximate matching from [Brow04] give them a speed-up factor
of 125, for a loss of less than 10 percent of the correct matches. They show that, this gives a 10
percent better recall than indexing on random dimensions (which are pixels) of their descriptor.
The particular results from [Brow04] are for the application of image stitching

• [Brow04] (section 7) experimentally found that, doing Lucas-Kanade refinement ([Luca81]) on
features actually harms the distinction between correct and incorrect matches

• There are methods to determine whether it is most appropriate to establish a fundamental matrix
or a homography, according to section 5.1 in [Miko04]

5 Design Analysis

In this section, the main design descision will be made. Most of the decisions are based on the conclusions
of previous work, as well as the intended application and the time constraints of this project.

5.1 Pipeline Considerations

We will start by taking a look at an overall pipeline proposal for feature matching and camera registration.
The complete pipeline will not be implemented, but the overview identifies some desired properties of
the parts that will be implemented.

5.1.1 A Simple Pipeline

A simple pipeline for feature matching and camera registration can consist of the following sequence of
phases, starting from the top:

• Image input

• Image preprocessing

• Feature detection

• Establish measurement areas from the detected features

• Compute feature descriptors

• Feature matching on descriptors

• Camera registration

In this pipeline, the feature detection and descriptor matching methods have to be quite good. They
must be able to match features with wide baseline and with few assumptions about the input images. It
must also have a high position accuracy in the matched features, to give a precise camera registration.

The detection and matching parts of the pipeline can be done with more than one feature detection
and matching method, where the methods are used side-by-side. The motivation is to increase robust-
ness, thus creating an opportunistic system, as in [Tuyt99] and [Tuyt00]. A good reason for considering
this is that, image content may vary quite a lot and the performance of different methods is likely to
depend on the image content, as argued in section 4.

25

5.1.2 A More Advanced Pipeline

A more advanced pipeline, which has two rounds of feature detection and matching, can also be used.
Such a pipeline would consist of the following sequence of phases:

• Image input

• Image preprocessing

• Wide-baseline feature detection

• Wide-baseline feature matching

• Approximate camera registration

• Possibly: Compensation for camera registration on input images, e.g. by image warping, possibly
both ways for an image pair

• Possibly: Image preprocessing

• Feature detection, which can be narrow-baseline, in case the image compensation was done

• Narrow-baseline (in case the image compensation was done) feature matching, or, alternatively,
feature matching guided by the approximate camera registration

• Accurate camera registration

This pipeline contains two rounds of feature detection and matching. The first of these must in
particular be good for matching features with wide-baseline and with as few assumptions about the
input images as possible, but it may compromise on the location accuracy of the correspondences. The
second round of feature detection and matching must have a high location accuracy, but it can be guided
by an approximate camera registration, which can estimate some feature correspondence parameters,
such as in particular the corresponding feature location, but also scale factor, rotation, affine geometry
transformation and illumination changes.

As in the simple pipeline, each of the two rounds of detection and matching parts of the pipeline
can be done with more than one feature detection and matching method, with each method used side-
by-side. This may particularly be useful in the first round of the detection and matching, before the
approximate camera registration, since this stage of the pipeline has the fewest assumptions about the
input images.

The pipeline proposed here only considers two overall rounds of feature detection and matching.
However, multiple passes and iterations can be used, so this is just a manageable example of a pipeline.

5.2 Desired Properties of the Methods for the Pipeline

This report will, due to time constraints, be limited to feature detection, determining measurement
areas, computing feature descriptors and simple feature descriptor matching. Hence, we will not build
a complete pipeline. Also, only one feature detector will be implemented. The primary focus will be on
the feature detector and the feature descriptor, since these are the key non-trivial methods.

Since this report focuses on wide-baseline image correspondences, we will focus on methods, which
are suitable for particularly the first round of feature detection and matching in the pipeline. This means
that, the detector may sacrifice some location accuracy but that it has to work without any assumptions

26

on the input image. Both the feature detector and the feature descriptor should generally be as robust
as possible. The assignment of measurement areas defines the interface between the detector and
descriptor methods, so they have to fit each other.

For the feature matching, we will only do simple brute-force matching.

5.3 Feature Detection

With the summary of arguments from section 4, we can conclude that, among detectors, which handle
geometric affine invariance, Hessian-Affine and Maximally Stable Extremal Regions (MSER) seem to be
the best methods. MSER does not handle blur as well as Hessian-Affine, but on the other hand, it should
be a lot faster to compute. Implementing the Fast Level Set Transform (FLST) is also interesting, since
it seems comparable to MSER and offers additional features, but we have no performance comparions
and FLST seems more involved to implement. The methods with affine invariance are needed, if handling
viewpoint changes of more than e.g. 40 degrees is desired.

If we limit the allowed viewpoint changes to 40 degrees, methods like Hessian-Laplace, Fast Hessian
or Differences of Gaussians (DoG) seem to be better (see section 4). Which one of these is best, is not
clear. Fast Hessian seems to be both the fastest and less memory intensive and DoG seems to be faster
than Hessian-Laplace.

As already argued (section 4 again), combining detectors seems to be a good idea, particularly because
their relative performance depends on image content. Combining detectors, which detect different kinds
of features, thus seems to make most sense. E.g. for a system handling affine invariance, combining
Maximally Stable Extremal Regions (MSER) and Hessian-Affine would be interesting, since MSER
detects bounded regions, based on image intensities, and Hessian-Affine detects corners. However, to
limit the scope of this report, only one detector will be implemented.

Maximally Stable Extremal Regions (MSER) will be the detecor being implemented, since it is able
to handle affine invariance and should work well.

5.4 Feature Descriptor

From the conclusions in section 4, the Speeded-Up Robust Features (SURF) descriptor seems to be a
good choice. It is very distinctive, uses little memory and does not seem very difficult to implement. The
descriptor from the Scale Invariant Feature Transform (SIFT) is also good, but does not seem as good
as SURF. SIFT-PCA and GLOH are extended and slightly better versions of SIFT, but they still don’t
outperform SURF and in being extensions of SIFT, the implementation effort for these methods most
likely becomes bigger. Using generalized colour moments, as defined in [Tuyt00], seems interesting,
since it is a low-dimensional and simple descriptor. Gradient moments, which should be comparable to,
if not the same as generalized colour moments, seems to be one of the best performing low-dimensional
descriptors, according to [Miko05]. However, SURF is still better and [Mata02] already uses moments
as a descriptor, so implementing that again for the same detector (MSER) as in [Mata02], would not
give any new contributions in this report. Hence, the choice is the SURF descriptor.

We will not be using the Upright version of the feature descriptor (U-SURF), since we want to support
input images taken with a hand-held camera, where the camera may not be upright. Features may also
rotate for other reasons than the camera rotating, e.g. due to perspective changes of tall objects seen
from various angles from the ground level, such as the corners of the temple in the pictures in figure 5,
which we will be considering later.

We will use the high-precision descriptor, SURF-128, rather than the regular SURF descriptor or the
SURF-36 descriptor. The reason is that, SURF-128 gives better results and the only advantages of using

27

the other descriptors are improved computation speed, which we are not too concerned about in this
project.

5.5 Measurement Areas

For affine invariance for the Maximally Stable Extremal Region (MSER) detector, fitting an ellipse to the
detected region, by using second moments (see e.g. [Miko04], [Tuyt00] and chapter 15.2.2 in [Oshe06],
for inspiration on how to do this), seems to be an obvious choice of measurement areas. However, the
SURF descriptor, as it is described in [BayH06], does not support elliptical measurement areas, so it
would have to be modified somehow, in order to support that. We will look at suggestions on how to
do this in section 7.4, but the implementation will be limited to using circles as measurement areas.

Actually, using circular measurement areas removes one of the primary advantages of the MSER
detector, namely that, it quite naturally handles affine invariance, by using the shape of the detected
region, so this is actually quite a miserable limitation. However, it will not be a big effort to extend
the implemented methods to handling affine invariance, so for the long-term intentions with this report,
which is creating a commercial application, the chosen methods are still very relevant.

5.6 Descriptor Matching

In a real implementation, a clever data structure or a fast approximate heuristic for the feature descriptor
matching should probably be used, rather than brute-force matching. However, approximate heuristics
would not be as good as the brute-force approach for evaluating the performance of the feature detector
and the feature descriptor. The detector and descriptor are the primary components evaluated in this
report, which is why the brute-force matching is a simple and actually better choice for this report.

As it turns out, what is referred to as brute-force matching in the litterature actually has different
options, as we shall see in the more detailed implementation description. Overall, it is possible to do
either one-way matching or two-way matching. One-way matching is appropriate for tasks like object
recognition. For matching two input images with each other, two-way matching seems more appropriate.
Thus, two-way matching will be implemented, but not evaluated.

For the performance evaluations however, we will use one-way matching, instead of two-way match-
ing. The reason is that, two-way matching turns out to be inappropriate for computing the performance
measures. It can result in repeatability values for the detector and recall values for the descriptor, which
are either above 100 percent or overly pessimistic. It also seems that, [Miko04], [Miko05] and [Miko06]
uses one-way matching in their evaluations, even though this may not be stated directly.

As evident from the conclusions in section 4, it seems most relevant to do nearest neighbour matching,
rather than threshold based matching. There is also much evidence pointing to that, using the ratio
between the nearest match and the second nearest match is good for filtering out bad matches. For the
chosen descriptor, Speeded Up Robust Features (SURF), the authors use the criterion that, this ratio
must be less than 0.7 ([BayH06]). The article [Lowe04] uses 0.8, but this is for another descriptor, the
Scale Invariant Feature Transform (SIFT). Hence, we will use 0.7 and, in order to limit the scope of
the report, we will not evaluate this criterion any further. It should be noticed that in [Brow04], they
suggest replacing the second nearest match with the average of the second nearest matchs from all
other images, which seems like a very good idea. However, we only consider two images in this report,
so we will leave this for suggested future work.

28

5.7 Considering Colours

The methods which are implemented are described only for black and white image intensities in the
cited references. Therefore, and to limit the scope of this report, we will not consider taking advantage
of colour information in the presented implementation. Proposals are given for extensions to colours in
section 7.7.

6 The Implemented Methods

This section describes the methods implemented, including the key implementation details. The set of
implemented methods can be summarized as:

• Feature detector : Maximally Stable Extremal Regions (MSER), as in [Mata02]

• Measurement areas: The radius of a cirle with an area of the number of pixels of an MSER
region establishes the scale, s, of each detected region. The feature descriptor method defines its
measurement area from this scale

• Feature descriptor : The oriented Speeded Up Robust Features (SURF-128) descriptor, as in
[BayH06]

• Feature matching : Image pair-wise brute-force descriptor matching with a threshold on the ratio
between the nearest and the second nearest match

This gives an automatic wide-baseline method for establishing candidates for correspondence points
between images, without any a priori knowledge about the image contents. It has been implemented
for a pair of input images, where only 8-bit black and white image intensities (0-255) are considered.

6.1 Disjoint Unifiable Sets and Union-Find

One of the primary tools for implementing the Maximally Stable Extremal Regions (MSER) method is
a disjoint unifiable sets data structure, which we shall go through here. It can also be found in e.g.
[Corm90] in the section ”Data Structures for Disjoint Sets”.

The data structure works by representing an element of a set by the value of the element, along with
an optional reference to a parent element of the same set. With this parent reference, the elements form
a tree, where the leaves point towards the root. The sets are disjoint, meaning that, an element belongs
to precisely one set, initially its singleton set. A set is represented by its representative element, which
is the element in the set without any parent reference, i.e. the root of the tree. Given any element, it
is possible to find the representative element of its set, by traversing the parent references. The three
most important operations on the data structure are: 1) creation of a singleton set, 2) unification of
two sets and 3) querying whether two sets are the same set or two disjoint sets. When unifying two
disjoint sets, one set is annihilated, by making the reference of its representative element point to an
element in the other set.

The data structure with references between elements and how it changes by two unify operations
is illustrated in figure 3, where the parts shown as area = [a0, a1, a2, . . .] are only relevant for the
Maximally Stable Extremal Region (MSER) detector, so they can be disregarded for now.

29

Figure 3: The disjoint unifiable sets data structure with references between elements. The horizontal
lines split between the data structure as it looks at three different points in time, illustrating how
it changes with two unify operations. The parts shown as area = [a0, a1, a2, . . .] are only relevant
for the MSER method and they illustrate maintained pixel areas of the sets for this method

30

Figure 4: An example of an upper level-set and a lower level-set, where a pixel’s neighbourhood is
its 4-neighbourhood. The squares represent pixels, whose intensities are given by the numbers

6.2 Level-Sets

For the Maximally Stable Extremal Region (MSER) detector, we will need the concept of a level-set.
Specifically, the kinds of level-sets we will be considering are intensity level-sets, where we let S be the
set of possible intensities. We need two kinds of level-sets: upper level-sets and lower level-sets. An
upper level-set is defined as a set of pixels, which have high intensities, i.e. bright colours, down to
some given lower limit on the intensity level. Formally, this can be defined as:

Qλ = {I(p) ∈ S | I(p) ≥ λ}

Similarly, a lower level-set contains low intensities, i.e. dark colours, up to a given upper limit on the
intensitiy level. More formally:

Qµ = {I(p) ∈ S | I(p) ≤ µ}

The sets of pixels considered, which have the coordinates p in the above definitions, are usually
connected neighbours of pixels. The neighbouring relation between pixels may vary. E.g. a pixel’s
neighbours may be its immediate four neighbours, its eight closest neighbours or something different.
Such a pixel level-set can be specified by the following data: 1) a pixel belonging to the level-set, 2)
whether it is an upper or lower level-set and 3) the intensity level, which defines the upper or lower limit
of the level set. An example of an upper level-set and a lower level-set is illustrated in figure 4, where
a pixel’s neighbourhood is its 4-neighbourhood.

In [Mata02], they call the level-sets ”extremal regions” and they denote them as Qi, where i ∈ S
and where it is unspecified whether it is an upper level-set or a lower level-set. We shall also use the
subscript i, when upper vs. lower limit is unspecified.

As a litterature note, the references [Oshe06] and the preprint [Case08] use the definitions of level-
sets seen here. However, [Mona00] denotes upper level-sets by Xλ and lower level-sets by Xµ, but
otherwise defines an upper versus lower level set as here, i.e. Xλ ≡ Qλ and Xµ ≡ Qµ. [Mona99], on

31

the other hand, uses Xµ to denote upper level-sets and define them oppositely, as having an upper limit
and containing low intensity values. They have a corresponding definition of Xλ for lower level-sets.
[Mata02] does not relate the definition of regions to level-sets.

6.3 Maximally Stable Extremal Region Detector: MSER

The implementation of this method follows the description in [Mata02], except for some elaboration on
the criteria for when a region is stable, as we shall see.

6.3.1 Maintaining and Unifying Pixel Level-Sets

As metioned in section 6.1, the primary tool, used for implementing this method, is the disjoint unifiable
sets data structure. The sets, which are maintained, are intensity level-sets of neighbouring pixels,
where the neighbours of a pixel are its four immediate neighbours. The algorithm works by making two
separate passes, one for upper level-sets and one for lower level-sets, so in each pass, we don’t need to
specify for each set, whether it is one or the other kind of level-set.

The data, which is maintained for each set, i.e. for the representative element of that set, is the
following:

• The current area of the set, in pixels

• The current intensity level limit of the set

• A history of entires of how the set was before each unify operation. Each entry in this history
contains the area in pixels and the intensity level limit

The intensity level limits mentioned here will be the lower intensity limit, for upper level-sets, and
the upper intensity limit, for lower level-sets. New history entries are only recorded for a set, when its
current intensity level differs from the new intensity level, such that we only record area changes as a
function of level changes.

An example of the data stored for a set might be the following, where the set is an upper level-set,
which has been unified at least two times:

{area = 7,

level = 240,

history = [{area = 5, level = 246},

{area = 1, level = 251}]

}

This is shown using Standard ML value expression syntax, where records with named fields are sur-
rounded by { and } and lists of elements are surrounded by [and]. List elements, as well as record fields,
are separated by commas and a record field has the form <field name> = <value expression>.

When two sets are merged, one set is annihilated by the merge, as mentioned earler, but its former
representative element keeps its data and ceases to be a representative element. The data of this former
representative has its current area and level updated to that of the new set, while maintaining the history
of former areas and levels; this is exactly the same as for representative elements. Former representative
elements, which means most elements after this algorithm has run, thus have a history of area changes
as a function of level changes, which includes the area and level of the unified set, which made the
element cease to be a representative element. This in turn means that, the history of the life-times of

32

all sets created by unification is maintained. In figure 3, the parts shown as area = [a0, a1, a2, . . .]
illustrate the maintained areas of the sets, where a0 is the current area for representative elements;
for former representative elements, a0 is the area of the unified set, which annihilated the set formerly
represented by that element.

6.3.2 The Main Algorithm

Knowing the machinery of how sets are unified and their data maintained, we can now go through the
main algorithm.

We start by sorting all pixels in the image according to their intensity. This can be done particularly
efficiently, by using Bucket-Sort, also known as Bin-Sort, described in section 9.4 in [Corm90], if pixel
intensities are in a small discrete set of values, such as integers from 0 to 255 for an 8-bit image.

For generating the lower level-sets, the intensities are traversed from the lowest intensity level to
the highest, where the intensities are considered the upper level limit. For each intensity level for each
pixel at that level, a singleton level-set for the pixel is created and unified with the possibly existing
level-sets for the pixel’s four neighbours. For doing this, it is convenient to have a two-dimensional
array, whose domain is the same as that of the frame buffer coordinates, such that a pixel level-set
element can be associated with each pixel. Each entry of such an array is initially empty. Entries get a
pixel level-set element associated with it, when the corresponding pixel is traversed, during the ordered
intensity traversal. After this traversal, each entry of the array contains a history of pixel level-set area
changes as a function of intensity level limit, for sets which have had its representative element at that
pixel. In the next section, will use this history for extracting level-sets, which are considered stable.

Upper level-sets are handled similarly, except that the intensities are traversed from the highest
intensity level to the lowest and that the intensities are considered lower level-set limits.

6.3.3 Extracting Stable Regions

This section contains quite a lot of description and details, but this is significant for the final results.
[Mata02] uses the following definition of a stable region: ”Let Q1, . . . ,Qi−1,Qi, . . . be a sequence

of nested extremal regions, i.e. Qi ⊂ Qi+1. Extremal region Qi∗ is maximally stable if and only if
q(i) = |Qi+∆\Qi−∆|/|Qi| has a local minimum at i∗ (| · | denotes cardinality). ∆ ∈ S is a parameter of
the method.”. The set S here is the set of image intensities and it should be noted that, this notation
assumes that the ordering of the indices i is reversed, when considering upper level-sets, as opposed to
lower level-sets. The formula

q(i) =
|Qi+∆\Qi−∆|

|Qi|
(9)

means that, we look at the histories of level-sets and consider a level-set Qi at a point in time, where
its level limit is i. Its area in pixels is |Qi|. The backslash denotes set-exclusion, so |Qi+∆\Qi−∆| is the
number of pixels that have been added between intensity levels i − ∆ and i + ∆. So the formula finds
minima in the relative rate of area change over a range of intensities.

The article [Mata02] does actually not say anything about what the parameter ∆ should be or how
to establish it. To get some intuition about this parameter, figure 5 introduces two photographs of
the Aκρóπoλη in Athens, which we will use for illustration. These pictures are images 6 and 7 in a
sequence, taken in the year 2002 by the author, so the pictures were taken without prior knowledge of
how the implemented methods presented in this report would be, but the author had read [Poll00] at

33

that time. Figure 6 illustrates extracted regions with ∆ values of 50 and 10. Figure 7 is a zoomed-in
version of the same pictures. As can be seen, the ∆ value has a substantial impact on how many regions
are detected.

∆ specifies the extent of a range of intensities and the minima are where there is the least amount of
region area change over an intensity range of that extent, as compared to neighbouring intensity ranges.
However, if the detected minima have a high value, it means that, there is still a significant change in
region size at that minimum. Hence, lower minima should clearly be preferable to higher minima, so we
can use the detected minimum values as a measure of confidence for how good the detected regions are.
For a region to remain as stable as possible, it is also preferable that ∆ is as large as possible. However,
∆ is fixed in the formula in equation 9, so this formula does not easily allow for optimizing both the
extent of the range of intensities and the minimal area change of regions at the same time. For now,
we can consider figure 8, which can be seen as three example graphs of the formula in equation 9. High
and low minima are pointed out and a horizontal line is drawn, which could be set as a limit between
good and bad minima. Notice though that, in reality, this graph would not be smoothly varying, but
piece-wise linear.

Another problem, unrelated to the above considerations, is that, there may be multiple minima
detected close together on a history of region area changes. As it turns out, this problem actually seems
to be quite serious in practice, since it detects several almost identical regions on top of each other.
This can confuse the feature matching later on, which is very undesirable. There are examples of such
multiple minima close together in figure 9 and we shall return to this figure later.

To summarize a few conclusions about the stability of the areas of regions, we have that:

• Lower minima of the rate of area change are better than higher minima

• Minima, which are sustained over a longer range of intensities are better

• Oscillations in the rate of area change can give several minima close together. This results in
multiple almost identical regions on top of each other, which we would prefer to avoid

One solution to the problem with oscillations and several minima close together is to use a Hysteresis
limit, in the way that it is used for e.g. battery charging or thermostats; see e.g. [HystWi]. Specifically,
traverse the graph left to right (or right to left) while remembering a state flag, which denotes either
”inside” a minimum or ”outside” a minimum. The limit for switching from inside to outside is set higher
than the limit for switching the opposite way. This actually changes the algorithm from detecting minima
into detecting ranges of intensities, within which the rate of area change is acceptably low. An illustration
of this can be seen in figure 9. In running the algorithm this way, we not only get the points of the
minima, but also the range of how many intensity levels, through which the minimum was sustained. It
should be noted that, the start of the minimum is detected at the low Hysteresis limit, while the end of
the miminum is detected at the high Hysteresis limit. Thus, the detection of minima will become more
symmetric, if we remember the last time that we passed the lower Hysteresis limit, before also passing
the high limit to leave the minimum. The centre of the minimum can then be computed as the intensity
in between the intensities, where the low Hysteresis limit was passed. This centre is then the intensity
level, where the region is considered most stable. The location of the beginning, centre and end of a
minimum is shown in figure 9. An example of regions extracted with this method, where ∆ is 20, can
be seen in the top image in figure 10. Figure 11 contains a zoomed-in version of the same picture.

An alternative solution to the problem with multiple minima detected close together, is to just detect
all possible minima initially. After this detection, sequences of minima, which are close together, can
be merged such that, only one of those minima is returned. For this, we would need a notion of when

34

Figure 5: Two pictures from a sequence of photographs of the Aκρóπoλη in Athens. These pictures
were taken in the year 2002 by the author, so the pictures were taken without prior knowledge of how
the implemented methods presented in this report would be. These images are fairly challenging
for the methods implemented here, since they contain lots of trees and bushes and lots of repeated
texture on the brick walls. In this report, we will only be looking that those two pictures from
this photographed image sequence. Top: Image six in the sequence. Bottom: Image seven in the
sequence

35

Figure 6: Image six of the Aκρóπoλη image sequence, where all detected MSER regions are shown
by painting the edge pixels outside each detected region white. The computed centre of each region
is shown as a white pixel with four black pixels around it. In this picture, regions are extracted
with the formula in equation 9, where ∆ is 50 in the top image and 10 in the bottom image. As
can be seen, the ∆ value has a substantial impact on how many regions are extracted. E.g. in the
top image, the front side of the temple appears to be one big region

36

Figure 7: These pictures are zoomed-in versions of the pictures in figure 6, illustrating ∆ values of
50 (top) and 10 (bottom) for the region stability criterion from the formula in equation 9. As can
be seen, the ∆ value has a substantial impact on how many regions are extracted. E.g. in the top
image, the front side of the temple appears to be one big region

37

Figure 8: Example graphs of the formula in equation 9. The graphs can also be considered the
rate of area change of regions as a function of the region’s intensity level limit, when the region is
formed as a level-set, as expressed by the formula in equation 11. The minima of the rate of area
change are illustrated and low minima are better than high minima. A horizontal line is shown,
which could be used for separating between good and bad minima

Figure 9: Two graphs of the formula in equation 9. The graphs can also be considered the rate of
area change as a function of a region’s intensity level limit, when the region is formed as a level-set,
as expressed by the formula in equation 11. Minima are detected with a Hysteresis limit, which
consists of a lower and an upper limit. These limits switch a flag, maintained while traversing the
graph left to right (or right to left). The flag denotes when the rate of area change is ”inside” a
minimum versus ”outside” a minimum. This minimizes oscillation artifacts, when using the limits
to find a range of intensities, with acceptably low rates of area change

38

minima are close together. One definition is that, if the area increase between two successive minima
q(i∗) and q(j∗), is sufficiently small, they are considered as being close together. One possible formula
for this is the following, where we assume that |Qj∗ | ≥ |Qi∗ | (exchange j∗ and i∗ if this is not the case):

100 (|Qj∗ | − |Qi∗ |)

|Qi∗ |
< p (10)

In this formula, p is the maximum allowed percentage-wise increase in area from |Qi∗ | to |Qj∗|.
The ideas presented so far are the primary ideas for the implementation that we will be evaluating.

However, we will also go through a different algorithm for detecting stable regions, which combines
some of the ideas presented so far in a different way. Instead of using the formula in equation 9, we can
consider this alternative formula:

q(i) =
|Qi+1\Qi|

(|Qi| + |Qi+1|)/2
(11)

This formula expresses the rate of area change as a function of the region’s intensity level limit. It
somehow corresponds to the formula in equation 9, with ∆ being 0.5, but ∆ = 0.5 is not strictly valid
for that formula. We can use this formula as before, i.e. either 1) for detecting minima and possibly
merging minima, which are close together, or 2) by using Hysteresis limits to derive ranges of intensities,
where the regions are stable. Notice that, since there is no a priori fixed range of intensities in this
formula (equation 11), it should more readily accomodate using the extent of the detected ranges of
intensities as measures of confidence, as opposed to the formula in equation 9. An example of regions
extracted with this method can be seen in the bottom image in figure 10. Figure 11 contains a zoomed-
in version of the same picture. In this picture, only regions, for which the rate of area change was below
the lower Hysteresis limit over at least two intensity levels were finally kept, which is the way that the
extents of ranges of intensities were used as confidence measures here.

Until now, we have talked about using either the detected minimum values or the extents of detected
ranges of intensities as measures of confidence. One possible way of doing this is that, the best half
of the regions could be selected, e.g. those with the best measures of confidence. Alternatively, a
fixed limit could be set, for how good a measure of confidence has to be, in order to be classified as
acceptable. A fixed limit on the minimum value, which is one kind of measure of confidence, is shown as
a horizontal line in figure 8. Such a limit could be fixed a priori or it could be set, based on an analysis
of the actual measures of confidence of all detected region histories. One simple analysis is making
simple statistics on the detected regions, e.g. finding the smallest, the largest and the mean values of
the measures of confidence. A limit could be set, based on those statistical values. When using the
formula in equation 9 for detecting stable regions, we use this technique by afterwards setting a limit,
which is half-way between the smallest minimum value and the mean of all minimum values. We use
this limit for removing all detected regions, whose minimum values are above the limit. For short, this
method will be called half-mean filtering.

As an example of half-mean filtering, we will consider image nine in the sequence of images of
Valbonne Church, since an image from this image sequence is also shown in the article [Mata02], which
allows for a fairly direct visual comparison with that article. Even though the image in that article is not
the same image from that image sequence, the detected regions in [Mata02] still seem somehow better
than what we get here. Figure 12 has regions detected with the formula in equation 9 with ∆ = 20
and with sequences of regions merged according to equation 10 with p = 10. Figure 13 is a zoomed-in
version of the same picture. For comparison, figure 14 shows regions detected in the same way, but

39

Figure 10: Image six of the Aκρóπoλη image sequence, where all detected MSER regions are shown
by painting the edge pixels outside each detected region white. The computed centre of each
region is shown as a white pixel with four black pixels around it. Top: Regions are extracted with
Hysteresis limits on the formula in equation 9, where ∆ is 20. The Hysteresis limits were computed
based on statistical analysis of the detected minimum values of an initial region detection (without
Hysteresis), as described in the text. Bottom: Regions are extracted with Hysteresis limits on the
formula in equation 11. The low Hysteresis limit is 0, which is tested by ≤ and the high limit is 1,
which is tested by >. Only those regions, for which the rate of area change was below the lower
Hysteresis limit over at least two intensity levels were finally kept

40

Figure 11: These pictures are zoomed-in versions of the pictures in figure 10. Top: Regions are
extracted with Hysteresis limits on the formula in equation 9, where ∆ is 20. The Hysteresis
limits were computed based on statistical analysis of the detected minimum values of an initial
region detection (without Hysteresis), as described in the text. Bottom: Regions are extracted
with Hysteresis limits on the formula in equation 11. The low Hysteresis limit is 0, which is tested
by ≤ and the high limit is 1, which is tested by >. Only those regions, for which the rate of area
change was below the lower Hysteresis limit over at least two intensity levels were finally kept

41

with regions subsequently removed according to the statistical limit just described: half-mean filtering.
Figure 15 is a zoomed-in version of the same picture. As can be seen, this removes some regions, which
do not seem very well-defined. In practice, half-mean filtering seems to improve the overall matching
performance.

We can also use the same kind of statistical analysis for establishing the Hysteresis limits, if using
those methods. In the top image in figure 10, and its zoomed-in version in figure 11, the Hysteresis
limits were computed based on such a statistical analysis. The statistics was computed on the detected
minimum values of an initial region detection without Hysteresis. The high Hysteresis limit was the
largest detected minimum value and the low Hysteresis limit was obtained by linear interpolation between
the largest detected minimum and the mean value of all detected minima, where the interpolation weight
is 0.99, meaning close to the high Hysteresis limit. When ∆ is 20, as in this case, the detected minima
have quite high values, up to around 10, 000, which is the reason for the fairly suspiscious looking weight
of 0.99.

As a final suggestion for a very simple method of extracting regions from the histories of area change,
the following was used in the initial stages of this project: accept all regions, which do not change area
over two or more intensity levels in the histories of area change. This works fairly well, but intuitively,
it seems to depend on regions not having too blurred or soft edges.

A few conclusions about the methods proposed in this section will be given here. However, they are
based only on a few experiments, which were not particularly systematic, and not all the implemented
methods are thoroughly tested, so these are not scientifically verified results:

• When using the formula from equation 9, a ∆ value of 20 seems to work fairly well for finding
corresponding image features. This formula and ∆ = 20 is what we will use in the experiments,
unless otherwise stated. A large ∆ value, like 50, is good for segmenting the image into a few
regions, but not very good for detecting several regions usable for finding corresponding image
features. Values smaller than 20 seem useful, but they can result in many detected regions and
the percentage of correct matches may even decrease. Figures 6 and 7 are relevant here

• Merging regions detected in sequence on the same history of area changes seems to improve the
overall matching performance. At least it seems to be the case, when the merged sequence of
regions successively grow by less than 10 percent of their size, i.e. when using the formula in
equation 10 with p = 10. An important performance measure here is that of 1-precision, which
we shall use for the evaluation in section 8. We will use this merging from equation 10 with
p = 10 in the experiments, unless otherwise stated

• The methods using Hysteresis limits, whether it is based on the formula in equation 9 or the one
in equation 11, seem to be good at detecting only a few regions. However, just as for the case
of large ∆ values in the formula from equation 9, this does not seem particularly well-suited for
finding corresponding image features. Figures 10 and 11 are relevant here

• Using the value of the detected minima seems to be useful as a measure of confidence for the
detected regions. In particular, ”half-mean filtering” seems to improve the overall matching
performance. This is done by setting a limit, which is half-way between the smallest minimum
value and the mean of all minimum values, and removing all detected regions, whose minimum
values are above this limit. This will be done in all experiments, unless otherwise stated. Figures
12, 13, 14 and 15 are relevant here

• The simple method of just accepting all regions, which do not change area over two or more
intensity levels in the histories of area change, is not to be underestimated, but it is not particularly

42

Figure 12: Image nine of the Valbonne Church image set, from which an image is also shown in
the article [Mata02]. All detected MSER regions are illustrated by painting the edge pixels outside
each detected region white. The computed centre of each region is shown as a white pixel with four
black pixels around it. The regions are detected with the formula in equation 9 with ∆ = 20 and
with sequences of regions merged according to equation 10 with p = 10

43

Figure 13: This is a zoomed-in version of the image in figure 12. The regions are detected with the
formula in equation 9 with ∆ = 20 and with sequences of regions merged according to equation 10
with p = 10

44

Figure 14: Image nine of the Valbonne Church image set, where all detected MSER regions are
illustrated by painting the edge pixels outside each detected region white. The computed centre
of each region is shown as a white pixel with four black pixels around it. The regions are detected
with the formula in equation 9 with ∆ = 20 and with sequences of regions merged according to
equation 10 with p = 10. The method that we refer to as half-mean filtering, is also applied to the
regions in this image. Notice that, compared to the image in figure 12, some regions are removed by
the half-mean filtering. In particular, many regions are removed around the cars and the fences in
the scene and the walls towards the left of the picture, which did not seem like very clearly defined
regions

45

Figure 15: This is a zoomed-in version of the image in figure 14. The regions are detected with the
formula in equation 9 with ∆ = 20 and with sequences of regions merged according to equation 10
with p = 10. The method that we refer to as half-mean filtering, is also applied to the regions in
this image. Notice that, compared to the image in figure 13, the regions which have been removed
by the half-mean filtering are less clearly defined than those which remain in this picture

46

impressive either. It detects a very large amount regions though, often between 5, 000 and 20, 000
regions, for the images shown in this report

• All of the above considerations apply, when handling upper level-sets separately from lower level-
sets, as we do consistently in this report

• In all implementations and experiments presented in this report, regions with an area of 16 pixels
or less or an area of one fourth of the total image area or more are removed. This is done after
all other detection methods and tricks have been applied. For some of the statistical analyses, it
might be worthwhile to investigate what the impact would be, if these very small and very large
regions were removed before computing the statistics

As a final example of which regions the final combined region detector can detect, consider figure
16. Figure 17 is a zoomed-in version of the same picture. This shows what the detector finds, when
one picture (the bottom picture) is more blurred than the other (the top picture). Blur is one of the
hard challenges for many region detection methods. Yet, the implemented MSER method finds regions,
which seem fairly consistent between the two pictures.

According to Søren Ingvor Olsen, there has been other work by the authors of the article [Mata02],
which address some of the issues discussed in this section, but that other work has not been looked into
for this report.

6.4 Summed Area Tables

The Speeded Up Robust Features (SURF) method uses a utility method called Summed-Area Tables,
introduced back in [Crow84] and well-known in folklore (see p. 114-115 [Moll99], p. 145-146 [Watt92]
or p. 827 [Fole96], depending on what’s on the nearest book shelf). They call it Integral Images in
[BayH06] and we will go through it here.

An integral image IΣ is constructed from the original input image I. Let both images be parameter-
ized over a coordinate pair (x, y). IΣ consists of, at each location (x, y), the sum of pixel values in the
image I(i, j) which have image coordinates i ≤ x and j ≤ y. I.e. IΣ(x, y) = Σi≤x

i=0
Σj≤y

j=0
I(i, j). The

area of an upright rectangular area can now be computed by four look-ups in IΣ, one addition and two
subtractions, assuming that we have checked that we are inside the image boundary. This is illustrated
in the left image in figure 18.

6.5 The Measurement Areas

When the features have been detected, it is necessary to establish a measurement area for each feature.
This is needed by the feature descriptor, described below in section 6.6.

The specific feature descriptor that we use needs a feature scale, s, for determining its measurement
area. This scale can roughly be thought of as the radius of a circle approximating the detected feature.
From this scale s, the descriptor method looks at a circular neighbourhood of radius 6s, weighted with
a Guassian function with σ = 2.5s, for determining an orientation of the measurement area. The actual
measurement area for the descriptor is then defined as a an oriented box of size 20s, weighted with a
Gaussian function with σ = 3.3s. Both of the Gaussians here are centered at the centre of the detected
feature.

The scale s for the detected MSER regions is established as the radius of a cirle with an area A
equal to the number of pixels of the detected region. Thus, s is given by the High School formula for
the radius of a cirle, given its area A:

47

Figure 16: Images one (top) and three (bottom) from the bikes image set, which we will see again in
for the performance evaluation in section 8. All detected MSER regions are shown by painting the
edge pixels outside each detected region white. The computed centre of each region is shown as a
white pixel with four black pixels around it. The regions are detected with the formula in equation
9 with ∆ = 20 and with sequences of regions merged according to equation 10 with p = 10. The
method that we refer to as half-mean filtering, is also applied to the regions in this image. The
bottom image is more blurred than the top image and blur is one of the difficult challenges for
many feature detection methods. The MSER method seems to detect regions, which are useful for
feature correspondence matching

48

Figure 17: Images one (top) and three (bottom) from the bikes image set, which we will see again in
for the performance evaluation in section 8. These pictures are zoomed-in versions of the pictures in
figure 16. The regions are detected with the formula in equation 9 with ∆ = 20 and with sequences
of regions merged according to equation 10 with p = 10. The method that we refer to as half-mean
filtering, is also applied to the regions in this image. The bottom image is more blurred than the
top image and blur is one of the difficult challenges for many feature detection methods. Notice
in particular that, the regions of the black windows on the white doors, the sign on the brick wall,
the license plates, side mirrors, back lights and side packs of the motor bikes are detected in both
images

49

Figure 18: Left: The dark square illustrates an area of summed pixels. The sum is calculated
by using the four summed rectangles shown, starting from the upper-right corner of the image
and extending down to their lower-right corner. The rectangles, which have a plus sign at their
lower-right corner, are added to the final sum and those, which have a minus sign, are subtracted.
Right: The Haar wavelet filters in the x and y directions, respectively. The white areas have filter
value 1 and the black areas have filter value −1

s =

√

A

π

6.6 Speeded Up Robust Feature Descriptor: SURF-128

The implementation of this method follows the description in section 4 of [BayH06]. As described in
the previous section, this method includes two steps: 1) calculating what the measurement area is,
specifically its orientation, and 2) calculating a descriptor within that measurement area. The method
relies on having determined a feature scale, s, as described in the previous section.

6.6.1 Calculating the Orientation

This part of the method gives a reproducible orientation for the measurement area of the descriptor.
The primary tool for this is making Haar-wavelet filter responses in the x and y direction. These filters
are illustrated in the right image in figure 18 and are computed efficiently by the summed-area tables
described earlier. Notice that, the y direction filter is upside-down, as compared to [BayH06], since we
want the upwards response, in keeping with the standard mathematical coordinate system conventions,
despite that the y-axis of our image coordinate system points downwards in the implementation. In the
implementation, we are also not mirroring the filters, as defined for the convolution operation, but we
should get ”rightwards” and ”upwards” gradient-like responses in this way.

The first step in determining the orientation, is to make regularly spaced Haar-wavelet filter samples,
with the distance between samples being s, the determined scale of the detected feature. Each sample is
made with Haar-wavelet filters with side length 4s. We make these samples in a neighbourhood of radius
6s around the centre of the detected feature and weight the samples with a Gaussian filter with σ = 2.5s.
In the implementation, we thus traverse a square area of size 12s, where the Gaussian-weighted sample
pattern is illustrated in the left image in figure 19. Notice though that, in the article [BayH06], it is

50

Figure 19: Left: The sample pattern for determining an invariant rotation for the SURF descriptor.
The dots illustrate sample points, where Haar-wavelet samples are made and where the size of the
dots illustrate the Gaussian weight of that sample. Right: The sample pattern of the SURF
descriptor. The dots illustrate the 25 sample points, which are used for creating 8 different sums
within each sub-area

stated that, they do this sampling in a circular region, which would indeed be possible, thus saving a
few samples near the corners of the square region, but it has currently not been implemented that way.

We collect the samples in a list of pair-wise samples, each pair with one x and y Haar-wavelet
response. We treat these pair-wise responses as vectors, with given x and y coordinates. From these
vectors, we find a dominant orientation. This is found by considering a sliding orientation window of
angle π

3
radians, containing the vectors with angles within this window. Within each possible such

window, the vectors are summed. The longest of these summed vectors is chosen as the dominant
orientation. This orientation is specified as an angle in radians, according to mathematical standards,
and is the orientation of the measurement area for the descriptor. The window size π

3
is a parameter,

which is experimentally determined to be a good choice in [BayH06], so we will use this constant.

6.6.2 Calculating the Feature Descriptor Vector

After we have assigned an orientation in the previous step at the given feature scale s, we can now
define the measurement area as an oriented box, rotated with the angle from the previous step. The size
of this box is 20s. All samples that we make within this box are weighted by a Gaussian with σ = 3.3.
Both the box and the Gaussian filter are centered at the centre of the detected feature.

The samples we make in this box are done in 4x4 regularly divided square sub-regions of the box.
Within each sub-region, we make 5x5 regularly spaced samples, weighed by the aforementioned Gaussian
filter. The sample pattern and sub-regions are illustrated in the right image in figure 19. At each sample
point, we compute Haar-wavelet filter responses in the x and y directions, similar to the previous step.
However in this case, the size of the filter is 2s and the filter is oriented as the box. This means that,
we cannot use the summed-area tables here. Implementation details, including source code, for making
such a Haar-wavelet filter sample, are given in the appendix.

The samples from each of the 4x4 sub-regions are summed in various ways. Specifically, we calculate
eight sum-values for each sub-region, which gives a total of 128 feature descriptor vector values. Let
us denote the Haar-wavelet responses by dx and dy for the x and y directions, respectively, and we
assume that they are pair-wise related. Then we calculate the following sums: Σdy<0dx, Σdy≥0dx,

51

Σdx>0dy, Σdx≤0dy, Σdy<0|dx|, Σdy≥0|dx|, Σdx>0|dy| and Σdx≤0|dy|. This can be described as the eight
possible combinations of sums of dx, dy, |dx| and |dy|, where the dx values are separated into two sums,
depending on the sign of its related dy and vice versa for dy. In [BayH06], section 4.2 and figure 3 are
good for giving an intuition about the meanings of these values, but this will not be repeated here.

The final 128-dimensional feature vector is normalized, to get contrast invariance for the descriptor.
Intensity offset invariance is already achieved by the fact that, the Haar-wavelet filters only measure
image intensity gradients, not actual intensities.

The article [BayH06] mentions that, they partition the features into two groups, depending on the
sign of the Laplacian. This is analogous to separating the detected MSER features into upper and
lower level-sets, since this also, like the Laplacian sign, distinguishes between black-on-white versus
white-on-black features. We therefore already have this advantage.

6.7 Feature Matching

This section describes the pair-wise matching of features from one image with features in the other
image. In the following, we will refer to one image as ”the first image” and the other image as ”the
second image”, but the roles of which is which are sometimes exchanged, as stated in the relevant
places.

The matching distance function is the Euclidean distance on the 128-dimensional feature vector. The
matching is done with the criterion that, a feature in the first image matches a feature in the second
image, if the distance to the closest, in terms of the Euclidean distance, feature in the second image is
closer than 0.7 times the second-closest feature in the second image. In that case, the closest feature in
the second image is chosen as a match for the considered feature in the first image. This is as previously
argued and as suggested in [BayH06].

The pair-wise feature matching is done by brute-force matching. Alas, brute-force matching is
apparently not just brute-force matching nowadays. The first and simplest way of doing brute-force
matching is to traverse all feature descriptors in the first image. Each of these traversed features in the
first image is compared to all features in the second image, where a match is found, if the matching
criterion is met. This strategy is illustrated in figure 20. One may notice that, the features in the second
image may get multiple correspondence matches to the first image, but not vice versa. Therefore,
this strategy is not symmetric. We call this strategy ”one-way brute-force matching”. It might be an
appropriate strategy for tasks like object recognition, where an unknown test image is matched against
one or more known images. This is also the method that we will use for the performance evaluations,
since the performance measures don’t work very well with two-way matching. However, for feature
matching between two images for camera registration, it does not seem appropriate, so we extend the
one-way matching strategy further.

The first extension we will consider, is to first run the above one-way matching from the first to the
second image and then do the same with the roles of the first and the second image exchanged. We
then merge the set of matches found, taking care to switch around the matched feature pairs in one of
the sets, such that we have consistent roles of first and second images in the merged set of matches.
The merged set of correspondence matches is likely to contain duplicate matches, so we remove those,
since they are obviously redundant. We call this strategy ”conservative brute-force matching”.

A second alternative to extending the one-way matching, is to run the two one-way matching passes,
as in the previous strategy. In the step of merging the two sets, we only keep the matches, which are
present in both sets of matches. We call this strategy ”cross-correlated brute-force matching”.

A third alternative, is to first run the one-way matching pass once. Then a new pass is made, where
only the matched feature vectors from the second image are kept, with duplicates removed. Now a

52

Figure 20: The feature descriptor list traversals, which are done for a brute-force one-way feature
match pass. Notice that, feature descriptors in the list at the right may be present in multiple
correspondence matches

second one-way matching pass is made, where the features kept from the second image are traversed,
each one being compared to all feature vectors of the first image. In this matching result, matches,
which have duplicate features from the first image, have their duplicates removed. This final duplicate
removal ought to be done in a way, which favours the best matches, but that has not been implemented.
This is the most aggressive strategy, so we call it ”aggressive brute-force matching”.

No thorough comparison between these methods has been made. However, source-code for auto-
mated simple unit-tests of the three extended strategies are given in Appendix D. For simplicity, the
unit-tests just use integers as feature descriptors and the difference between integers as the distance
measure between them. The reason that we can test the actual implementation in this way, with inte-
gers as descriptors, is that, the matching functions are polymorphic in which feature vector and distance
measure are used, which is very convenient. From these unit-tests, it is evident that, the conservative
brute-force matching keeps the largest amount of matches and that the aggressive brute-force matching
keeps the fewest matches.

Early in this project, the aggressive brute-force matching and the cross-correlated brute-force match-
ing seemed to filter out obviously good matches. However, this has not been verified for the final
implementation. Therefore, the conservative brute-force matching strategy is the one we will use here,
but this may not necessarily be ideal.

As mentioned earlier, for the performance evaluations of the detector and descriptor, the one-way
matching will be used, since the performance measures will not work properly for the two-way matching
methods, at least not for the conservative two-way matching.

Regarding execution time, it can be noted that, the aggressive brute-force matching is faster than the
conservative and the cross-correlated strategies, since it filters out several features from consideration
already in its first two passes. Doing just one-way matching is obviously even faster.

53

Figure 21 shows oriented descriptors on the Aκρóπoλη images from earlier. The descriptors shown
are those, which have been successfully matched by conservative two-way brute force matching. This
is the only image in this report, which uses two-way matching. The matches between these two images
do not seem particularly good, since only few matches seem to be correct. This already suggests that,
the implementation has to be improved.

7 Suggested Implementation Improvements

This section outlines some ways, in which the implemented methods could be improved.

7.1 Improvements to the MSER Detector

As made evident by section 6.3, particularly section 6.3.3, there are many possible ways of fine tuning
the parameters of the implemented MSER detector. A general observation is that, those methods, which
are extensions of what is presented in the article [Mata02], are generally concerned with finding stable
regions. In particular, finding low minima in the histories of area change, while also sustaining those
minima over as many intensity levels as possible, is a general theme. It would be interesting to find a
method, which can optimize for both of these criteria, while still avoiding multible detected regions on
top of each other. Even more drastically, the MSER detector could be replaced by the Fast Level Set
Transform (FLST), in case it turns out to be better.

The article [Mata02] suggests using a measurement area of size 3 times that of the convex hull of the
detected region. This corresponds quite well to the Gaussian weight with σ = 3.3s used by the SURF
descriptor. Section 3 of [Mata02] also suggests selecting measurement areas at different scales, 1, 1.5,
2 and 3 times the scale s of the detected region, which could also be considered for the implementation
presented here. It is not clear from their description how exactly this should be done, but descriptors on
measurement areas of size 1s in one image could be matched only to descriptors on measurement areas
of size 1s in other images; similarly for the other sizes. Considering that, the MSER method detects
relatively few regions, this improvement is probably important to consider for this particular method,
but it may also be used for other feature detection methods.

7.2 Incorporating Multiple Detectors

As already mentioned and suggested by previous work (e.g. [Tuyt00], [Lowe04] and [Miko06]), it is
worthwhile to consider incorporating several feature detectors into the same framework, in order to get
a robust system. In particular, a point-based detector, such as e.g. the Fast Hessian detector from
[BayH06] or Hessian-Affine from [Miko06], would make sense to combine with an MSER detector, since
these kinds of detectors find significantly different kinds of features. Both of these two kinds (region
based and point-based) of methods have strengths and weaknesses, which, to some extent, complement
each other. Part of the implementation from the SURF-128 descriptor, e.g. the summed area tables,
could even be reused for implementing the Fast Hessian detector.

Features should be detected and matched independently for each detector method. In a first phase
of the pipeline, some estimates of the camera view relationship could be made from the resulting feature
correspondences. This could be done both individually from the correspondences obtained with each
detector method, as well as by combinations of feature correspondences from multiple detector methods.
Each of these estimates could be used in a second phase with a more narrow search for matching features.
The estimate, which result in most matches being found in this second phase, could be assumed to be
the most reliable estimate to work from. The phrase ”most matches” here will probably have to be

54

Figure 21: The two images of the Aκρóπoλη from earlier, where all matched descriptors are shown
as oriented boxes. This image uses the conservative two-way matching strategy. The matches
between these two images do not seem particularly good, since only few matches seem to be correct

55

adapted to the individual feature detection methods, since some methods generally detect fewer features
than others, where MSER detects relatively few features.

7.3 Improvements to the SURF Descriptor

As already mentioned, in the article [BayH06], it is stated that, they do the sampling in the orientation
step in a circular region. This would indeed be a good and simple optimization, but it has currently not
been implemented.

The article also describes that, the descriptor calculation on the oriented area is done in the box
area and weighted with a Gaussian. Sampling in a square area also seems most natural, with the
way that their samples are divided into sub regions. However, it seems that doing this sampling in a
circular region instead, thus cutting away the corners of the box, would make sense here, especially
given the presence of the Gaussian weight. This would give fewer sub region samples, thus yielding an
optimization. Changing this would also make it possible to calculate feature descriptors slightly closer
to the edges of the input images, thus including more features in the images. This improvement has
currently not been implemented.

If sampling in a circular region is to be made, the sub regions could also be reorganized a bit, such as
to only have the four central sub regions and one outer region in each of the four principal directions, as
shown in figure 22. This would reduce the dimensionality of the descriptor, possibly without much loss
of its descriptive power, since it maintains the dense sampling where the Gaussian weights are high. The
samples in the proposed four outer regions could even be placed in a more strategic sample pattern than
regular placement, which is also illustrated in figure 22. Notice though that, if the space between any
of the samples is increased, the sample filter size should probably be increased correspondingly for those
particular samples. Decreasing sampling density in this way might be a good idea near the proposed
circular cut-off edge of the Gaussian filter, since it is furthest away from the centre of the detected
feature, which is where e.g. affine and projective distortions are likely to be worst. Such distortions are
also the reason for the Gaussian weight to be there in the first place.

7.4 Considering Affine Measurement Areas

In the article [Miko06], they suggest fitting an ellipse to the detected MSER regions and use this for
achieving affine invariance. In fact, the ability to do this quite easily, thus acheiving affine invariance,
is one of the strengths of the MSER method. It would also be worthwhile to consider this here for the
measurement areas used for the SURF descriptor. However, it may require a bit of care, in the way that
such an elliptical measurement area is utilized, when calculating the descriptor.

For the orientation step, it seems quite natural to warp the placement of the samples, as well as the
shape of the weighting Gaussian, according to the determined ellipse shape. However, the calculated
orientation of the box may not be compatible with the orientation of the ellipse, i.e. the two oriented
axes of the box may not coincide with the orientation of the two axes of the ellipse. Thus, we cannot
simply squish the two axes of the box according to the ratio of the two axes of the ellipse. However, we
may warp the box and the positions of all the samples in the box, as well as the weighting Gaussian,
according to the elliptical shape. This would turn the box into a parallelogram and the Gaussian weight
would get an elliptic shape. Notice that, in doing this, the individual Haar wavelet samples of the
descriptor should probably also be warped, thus also turning into parallelograms. Doing this for the
orientation step would remove the optimization of using summed area tables, but since this step is only
used for assigning an orientation, it might not be too bad to keep the square Haar wavelet samples in
this step. Square samples are also used in the orientation step of the current implementation, which

56

Figure 22: Proposed improvements to the SURF-128 descriptor: 1) sampling only in a circular
region, 2) sampling in fewer sub regions and 3) sampling the outer regions with a more strategic
sample pattern. This should give advantages such as being able to handle features closer to the edges
of the input images, making affine invariant sampling more natural and getting fewer descriptor
dimensions, hopefully without significant decrease in its descriptive power

seems to give fairly stable orientations.
The warping of sample locations according to an elliptic shape in the above two steps of the descriptor

calculation seem to particularly advocate that the descriptor samples are only made in a circular region,
rather than in a square, as suggested in the previous section. So, these proposed improvements are
quite compatible with each other, but could also be made and evaluated individually.

The main consideration here though is, whether the affine invariance of the measurement areas are
worthwhile. As mentioned, previous work states that, it may not be worthwhile and that it in fact
sacrifices some matching accuracy ([Miko04] and [Lowe04]). However, as we shall see in the evaluation,
the affine invariance seems to be needed. With the methods suggested here, we have both options, i.e.
having affine invariance or not, where the performances could be compared by evaluation.

7.5 Faster Matching

In a real implementation, a clever data structure or a faster approximate heuristic for matching should
probably be used, rather than brute-force matching. However, as mentioned earlier, the brute-force
matching is good for evaluating detector and descriptor performances.

7.6 Image Intensity Cross-Correlation

It would be worthwhile to consider implementing normalized image intensity cross-correlation, as a way
to reject unreliable feature correspondences, after they have been matched with the descriptor. This is
also done in section 3 in [Mata02] and e.g. [Tuyt00] and [Miko04].

57

7.7 Considering Colours

The current implementation uses only black and white image intensities. One practical limitation, which
may arise from this, is the case where neighbouring objects in a scene have different colours with similar
luminance.

One simple way of extending the implemented methods to consider colours would be to run the
feature detector for each of the three colour bands, red, green and blue, individually. Features detected
in one colour band should only be matched to features detected in the same colour band in the other
image, since it is reasonable to assume that, objects do not significantly change colour between varying
view points. It would also be possible to do this extension on other colour spaces than the RGB colour
space proposed here.

More elaborate methods of exploiting colour information may also be possible, but would most likely
require some kind of extension to the actual detector or descriptor methods used here.

8 Evaluation of the Implemented Methods

The performance evaluation in this project will be limited to making some relevant experiments on the
set of test images supplied at:

• http://www.robots.ox.ac.uk/~vgg/research/affine

The reason is that, these test images have estimated homographies available and that, this is a
well-known set of test images for the kind of methods presented in this report.

The evaluations that will be performed for the feature detectors are computation of repeatability
and location accuracy, in the spirit of [Miko06] and [Miko04].

For feature descriptors, we will compute recall and 1-precision. [Miko05] shows the recall of the
descriptors as a function of 1-precision, by varying their match criterion threshold to obtain differing
1-precision values. To limit the extent of this evaluation, we keep a fixed nearest neightbour to second
nearest neighbour distance ratio of 0.7, as was described in section 6.7. This means that, we don’t have
any parameter to change, to get differing 1-precision values. Hence, we will not use 1-precision as in
[Miko05], but only as a measure of false positives for the descriptor for a given image pair. Similarly,
we will also only use recall as a single value per test image pair.

8.1 Criterion for Correct Feature Matches

To determine if a feature match is correct, we use a predetermined homography, a 3x3 matrix, which
gives a way of mapping features in one image into the other image, provided that the image features
lie on a plane in the depicted scene. We have such homographies available for the set of test images,
which is being evaluated.

To determine if a feature match is correct, take the feature xa in one image, transform it with the
homography into x′

a in the other image and check that, the corresponding feature xb in that image in
some sense approximates the transformed feature x′

a.
There are at least two ways of measuring whether xb approximates x′

a. A conceptually simple way
is to check that, the distance between the features is within some maximum allowed distance. If we
assume that, xb and xa are the central feature points, this can be expressed by the formula:

‖xb − Hxa‖ < ǫ (12)

58

This is what is used in [Miko04], where they use an ǫ value of 1.5 pixels. However, measuring pixel
distances is a somewhat arbitrary measure, since, for example, it depends on the image resolutions.

In [Miko04], [Miko05] and [Miko06], they also use an overlapping criterion of transformed ellipses,
which formalises the intuitive desciption given in the introduction of this report, in section 2.2. This
comparison not only evalutes the distances between the features, but also e.g. how accurately the scale
and affine invariance is achieved by the feature detector.

The overlap criterion can be defined by the following formula, if we assume that Ca and Cb are the
circles associated with the central feature points xa and xb:

1 −
Cb ∩ H−T CaH

−1

Cb ∪ H−T CaH−1
< ǫo (13)

First off, it should be noted that, a circle, or more generally a conic C, is transformed into another
conic C ′ (which will be an ellipse, when C is a circle) by a homography H according to the formula
C ′ = H−TCH−1, where the conic is represented by a special 3x3 matrix. Notice the notation, where
HT means the transposed matrix, H−1 the inverse matrix and H−T the transposed of the inverse
matrix. The transformation of conics is described in section 2.3.1 in [Hart03] and we shall not dig into
the details of it here. We use C ∩ C ′ to denote the area of the intersection between the two conics,
here a circle C and an ellipse C ′, and we use C ∪ C ′ to denote the area of their union.

The above formula expresses that, the overlap error between the two areas should not be more than
ǫo. In [Miko04], [Miko05] and [Miko06], they consider the overlap criterion to be met, when the overlap
error is less than 40 percent, meaning that ǫo is 0.4. We use the same threshold here.

Since we are only using circles as measurement areas in the implementation, the overlap criterion
(equation 13) most likely gives larger errors than what could have been achieved, if we were using affine
ellipses. However, the overlap criterion possibly also gives some insights into how much our circles
are wrong, in terms of affine geometry changes between the images, since a circle in one image is
transformed into an ellipse in the other image. Indeed, earlier in this project, the evaluations in this
section were done with the pixel distance criterion from equation 12 above, where better results were
obtained than for the overlap criterion (equation 13) for larger differences in viewing angles, but worse
results than for the overlap criterion for smaller differences in viewing angles.

As mentioned in section 4 (from section 4 in [Miko06]), increasing the size of the measurement area,
as e.g. the implemented SURF descriptor does, generally increases the overlap in overlap tests, giving a
false sense of success. However, we are measuring the overlap of the circles, whose radius is established
as the scale s of the detected regions, from their detected area in pixels, as described in section 6.5.
Hence, this should not be an issue here.

8.2 Repeatability for Detectors

The performance of the detector is measured by its repeatability. It is defined by the ratio between the
total number of candidates for feature correspondences and the number of detected features in the first
image of the image pair, which are within the frame of the second image:

repeatability =
all candidates for correspondences

detected features in first image within frame of second
(14)

Features are considered to be candidates for correspondences, when they meet the overlap criterion
in equation 13, with ǫo = 0.4. The candidates for feature correspondences are searched for among all

59

detected features in the first image, where a feature meeting the overlap criterion exists in the other
image. Notice that, this search is done by the one-way brute-force match, described in section 6.7,
except that the match criterion is not the nearest-to-second-nearest-neighbour ratio but the overlap
criterion in equation 13.

Notice that, the denominator uses the number of features in the first image, which are within the
area of the second image. The reason for considering the features in the first image is that, the one-way
matching assigns at most one feature from the second image to each feature in the first image. Hence,
the number of features in the first image is the theoretical upper limit on the number of candidates for
feature descriptor matches. The reason for considering only the features, which are within the frame
of the second image is that, only these features can be candidates for correct correspondences. Hence,
the denominator is the upper limit on the number of possible correct correspondences. [Miko04] and
[Miko06] use the number of features in the image with the smallest number of features. To do this
correctly, we would have to switch roles between the images, such that the image with fewest features
is the first image in the one-way matching. However, to limit the extent of the evaluation, this has not
been done. The repeatability should be as high as possible, ideally 1, also represented as 100 percent.

We normally use the overlap criterion from equation 13 with ǫo = 0.4 when computing repeatability,
except when evaluating the location accuracy. For evaluating the location accuracy, we use the pixel
distance criterion from equation 12 instead.

8.3 Location Accuracy for Detectors

Another performance measure of the detector is its location accuracy, which is significant for how
accurate camera view relationships can be determined from its detected features. The location accuracy
is evaluated by computing the repeatability as a function of varying ǫ in the pixel distance criterion from
the equation 12.

8.4 Recall for Descriptors

The descriptor performance is partly evaluted by computing the recall value. This is defined as the ratio
between the correctly matched features and the total number of candidates for feature correspondences:

recall =
descriptor matches found and being correct

all candidates for correspondences
(15)

Features are considered both correct matches and candidates for correspondences, when they meet
the overlap criterion from equation 13 with ǫo = 0.4. The correct matches are searched for among the
descriptor matched correspondences, while the candidates for feature correspondences are searched for
among among all detected features in the first image, where a feature meeting the overlap criterion
(from equation 13 with ǫo = 0.4) exists in the other image. The recall value should be as high as
possible, ideally 1, also represented as 100 percent.

Notice that, the denominator of the recall is the same as the nominator of the repeatability.

8.5 1-Precision for Descriptors

The other performance measure for the descriptor is 1-precision. This is defined as the ratio between
the number of incorrect descriptor matches and the number of feature correspondences found by the
descriptor matching:

60

1 − precision =
descriptor matches found but being incorrect

all descriptor matches found (correct + incorrect)
(16)

The incorrect descriptor matches are searched for among the descriptor matched correspondences
and consist of those which do not match the overlap criterion (from equation 13 with ǫo = 0.4). The
1-precision value should be as low as possible, ideally 0, also represented as 0 percent.

More details about how the recall and 1-precision values can be used for computing things like the
number of correct matches can be found in [Miko05]. As mentioned, we are not showing repeatability
as a function of 1-precision, as in [Miko05]. We show these values individually per image pair.

8.6 Explanation for the Kinds of Graphs

We shall see several kinds of graphs. Two similar kinds of graphs are the graphs, which show repeatability
and recall, respectively, as a function of the image pairs, which are being matched. Each sequence of
six images is of the same scene, but with some property of the image changing gradually throughout
the sequence. To form the image pairs for the graphs, the first image is matched pair-wise with the
other images in the sequence, images two to six.

In the repeatability graphs, a perfect detector would have a repeatability of 100 percent for all images.
However, the detector performance usually decreases, as the image pairs become more challenging. In
the recall graphs, a perfect descriptor would also have a recall of 100 percent for all images. This is
also usually decreasing in practice with more challenging image pairs.

The graphs for 1-precision are also shown as a function of the image pairs, which are being matched.
1-precision is a measure of false positives for the descriptor and the ideal descriptor has a 1-precision of
0. If it is above 50 percent, it may not be possible to automatically obtain an estimate of the camera
view relation by the RANSAC method. Hence, being able to keep this value low is quite important.

The graphs evaluating location accuracy show repeatability as a function of the maximum allowed
pixel distance in the pixel distance criterion from equation 12, which is used when calculating the
repeatability for location accuracy. This kind of graph is made for one specific matched image pair at
a time.

8.7 Performance Graphs

This section contains all graphs for the performance evaluations. All the images and graphs shown
here were generated automatically by the implemented performance measurement program. The output
of this execution is shown in Appendix E. The output shows the file names of all saved files, where
detection and matching is done before saving the resulting images. Thus, it should be possible for the
reader to locate the exact numbers of detected and matched features for the evaluations, which may be
of some interest.

For each image sequence used, two example images from the sequence is shown first. Then, four
example images from the image sequences are shown with correctly matched descriptors, before the
graphs, which evaluate those image sequences. Notice that, only the two topmost of such four images
are matched with each other. The matched descriptors of the two lower images are also matched with
the first image in the sequence, but we don’t show the first image multiple times to illustrate this. The
descriptors are shown as oriented boxes. For all image sets, homographies are given between the images
pair-wise and those homographies are used for verification in the tests.

The graphs for location accuracy are at the end of this section.

61

Figure 23 shows two images from the graffitti image sequence. This is a sequence of six images
of increasing camera viewing angle of a painted wall. Some images in this sequence also have some
rotation of the camera. Figures 24 and 25 show the performance evaluation on this image set. The
performance is acceptable for the first two image pairs, which should have viewpoint angles of 20 and
30 degrees, respectively. Performance drops significantly for the third image pair, which should have a
viewpoint angle of 40 degrees, and becomes practically useless for the last two images. This shows that,
the implementation does not handle viewpoint changes very well, which could be attributed to the fact
that, it is not handling affine invariance.

Figure 26 shows two images from the wall image sequence. This is a sequence of six images of
increasing camera viewing angle of a brick wall, which has regularly repeated texture. Figures 27 and
28 show the performance evaluation on this image set. The performance is acceptable for the first two
image pairs. Detector performance and 1-precision practically useless for the last images. Recall for the
descriptor keeps its level for image pairs three and four as well. This shows that, the implementation,
particularly the detector, does not handle scale changes particularly well. However, the descriptor
seems to handle this fine, although these numbers may be misguiding, due to the very low number of
correspondences.

Figure 29 shows two images from the boat image sequence. This is a sequence of six images
of decreasing camera zoom and changing camera rotation. This gives changes in scale and rotation
between the images. Figures 30 and 31 show the performance evaluation on this image set. The
detector performance (repeatability) is acceptable for the first two image pairs, which should have
viewpoint angles of 20 and 30 degrees, respectively. Detector performance drops significantly for the
third image pair, which should have a viewpoint angle of 40 degrees, and becomes even worse for the
last two images. The overall performance, including the descriptor (repeatability and 1-precision), is
quite bad for all images. 1-precision does not get below 50 percent for any of the images. This confirms
that, the detector does not handle viewpoint changes very well. It also shows that, the implementation
does not handle regularly repeated texture very well, which is also known to be a challenging scenario
for these kinds of methods.

Figure 32 shows two images from the Leuven image sequence. This is a sequence of six images
of decreasing camera exposure time, resulting in decreasing illumination. Figures 33 and 34 show the
performance evaluation on this image set. The performance starts out acceptably for the first image
pairs, but drops steadily throughout the sequence. The detector performance (repeatability) and the
1-precision are more affected than the descriptor performance (recall). This shows that, the detector
handles illumination changes somewhat acceptably, but that there is definitly room for improvements.
It also shows that, the descriptor seems to handle illumination changes better than the detector.

Figure 35 shows two images from the bikes image sequence. This is a sequence of six images of
changing camera focus, resulting in increasing image blur. Figures 36 and 37 show the performance
evaluation on this image set. The performance of the detector (repeatability) drops fairly quickly with
increasing blur. The 1-precision and descriptor performance (recall) are maintained quite well though,
except for the final image pair, where the second image in the pair is very blurry. This shows that, the
detector does not handle blur particularly well, but that, the descriptor seems to cope with it quite well.

Figure 38 shows the location accuracy of the detector for the graffitti image set. The top graph
is for the first image pair and the bottom graph is for the third image pair, between images one and
four. This shows that, location accuracy is quite good for small viewpoint changes, but that it seems
to decrease with larger viewpoint changes.

Figure 39 shows the location accuracy of the detector for the boat image set. The top graph is for
the first image pair and the bottom graph is for the third image pair, between images one and four.

62

This shows that, location accuracy is quite good for small viewpoint changes, but that it decreases quite
a lot with larger viewpoint changes. This should probably be expected though, since we are measuring
the accuracy as a distance in pixels. When one image has a higher resolution than the other image,
one pixel in the low resolution image corresponds to several pixels in the high resolution image, giving
inaccurate locations.

Figure 40 shows the location accuracy of the detector for the bikes image set. The top graph is for
the first image pair and the bottom graph is for the third image pair, between images one and four. This
shows that, location accuracy is quite good and not severely affected by blur. This is may be surprising,
since blur severely affects how sharp edges appear.

63

Figure 23: Two pictures from the graffitti image set, which is a sequence of six images of increasing
camera viewing angle of a painted wall. Some images also have some rotation of the camera. Homo-
graphies are given between these images pair-wise and those homographies are used for verification
in the tests. A homography is valid for verification here, because the scene is a planar. Top: First
image in the sequence. Bottom: Third image in the sequence

64

Figure 24: Top: Images one, two, four and six of the graffitti image set, which has increasing
camera viewing angle, as well as some rotation in some images. Bottom: Repeatability of the
detector for the six images of the graffitti scene, showing detector performance as a function of
increasing viewing angle

65

Figure 25: Top: Recall of the descriptor for the six images of the graffitti scene, showing descriptor
performance as a function of increasing viewing angle. Bottom: 1-precision for the same sequence,
showing the descriptor’s false positives as a function of increasing viewing angle

66

Figure 26: Two pictures from the wall image set, which is a sequence of six images of increasing
camera viewing angle of a wall. The wall has a regularly repeated textured surface. Homographies
are given between these images pair-wise and those homographies are used for verification in the
tests. A homography is valid for verification here, because the scene is a planar. Top: First image
in the sequence. Bottom: Third image in the sequence

67

Figure 27: Top: Images one, two, four and six of the wall image set, which has increasing camera
viewing angle of a regularly repeated textured surface. Bottom: Repeatability of the detector for
the six images of the wall scene, showing detector performance as a function of increasing viewing
angle on regular repeated texture

68

Figure 28: Top: Recall of the descriptor for the six images of the wall scene, showing descriptor
performance as a function of increasing viewing angle on regular repeated texture. Bottom: 1-
precision for the same sequence, showing the descriptor’s false positives as a function of increasing
viewing angle on regular repeated texture

69

Figure 29: Two pictures from the boat image set, which is a sequence of six images of decreasing
camera zoom and changing camera rotation. This gives changes in scale and rotation between
the images. Homographies are given between these images pair-wise and those homographies are
used for verification in the tests. A homography is valid for verification here, because the camera
position is fixed, so the image plane can be considered a planar surface of the scene. Top: First
image in the sequence. Bottom: Third image in the sequence

70

Figure 30: Top: Images one, two, four and six of the boat image set, which has increasing scale
and changing rotation. Bottom: Repeatability of the detector for the six images of the boat scene,
showing detector performance as a function of increasing scale and some changes in rotation

71

Figure 31: Top: Recall of the descriptor for the six images of the boat scene, showing descriptor
performance as a function of increasing scale and some changes in rotation. Bottom: 1-precision
for the same sequence, showing the descriptor’s false positives as a function of increasing scale and
some changes in rotation

72

Figure 32: Two pictures from the Leuven image set, which is a sequence of six images of decreasing
camera exposure time, resulting in decreasing illumination. Homographies are given between these
images pair-wise and those homographies are used for verification in the tests. A homography
is valid for verification here, because the camera position is fixed, so the image plane can be
considered a planar surface of the scene. Top: First image in the sequence. Bottom: Third image
in the sequence

73

Figure 33: Top: Images one, two, four and six of the Leuven image set, which has decreasing
illumination, due to increasing the camera shutter time. Bottom: Repeatability of the detector
for the six images of the Leuven scene, showing detector performance as a function of decreasing
illumination

74

Figure 34: Top: Recall of the descriptor for the six images of the Leuven scene, showing descriptor
performance as a function of decreasing illumination. Bottom: 1-precision for the same sequence,
showing the descriptor’s false positives as a function of decreasing illumination

75

Figure 35: Two pictures from the bikes image set, which is a sequence of six images of increasing
blur. Homographies are given between these images pair-wise and those homographies are used for
verification in the tests. A homography is valid for verification here, because the camera position
is fixed, so the image plane can be considered a planar surface of the scene. Top: First image in
the sequence. Bottom: Third image in the sequence

76

Figure 36: Top: Images one, two, four and six of the bikes image set, which has increasing blur.
Bottom: Repeatability of the detector for the six images of the bikes scene, showing detector
performance as a function of increasing blur

77

Figure 37: Top: Recall of the descriptor for the six images of the bikes scene, showing descriptor
performance as a function of increasing blur. Bottom: 1-precision for the same sequence, showing
the descriptor’s false positives as a function of increasing blur

78

Figure 38: Top: Location accuracy of the detector for images one and two of the graffitti scene,
showing detector accuracy for the smallest difference in viewing angle in that image set. Bottom:
Location accuracy for images one and four of the same scene, showing the accuracy for a larger
difference in viewing angle

79

Figure 39: Top: Location accuracy of the detector for images one and two of the boat scene,
showing detector accuracy for the smallest difference in scale in that image set. Bottom: Location
accuracy for images one and four of the same scene, showing detector accuracy for larger difference
in scale

80

Figure 40: Top: Location accuracy of the detector for images one and two of the bikes scene,
showing detector accuracy for the smallest amount of blur in that image set. Bottom: Location
accuracy for images one and four of the same scene, showing detector accuracy for larger amounts
of blur

81

8.8 Conclusions of Performance Evaluation

The performance evaluation shows that, overall, the SURF descriptor seems to perform better than the
MSER detector. It also shows that, for handling larger viewpoint changes, improvements of the methods
are needed, but this can at least be explained by the fact that, affine invariance is not handled. For
challenges like scale changes, the detector does not perform well and should probably be improved. For
repeated texture, the entire implementation does not perform well. This is known to be a challenging
problem, but it should be possible to handle better than here. Overall, blur and illumination changes
are handled better than the other challenges. Illumination changes are also less challenging, but blur is
usually fairly challenging.

All in all, the implementation is a good starting point, but should certainly be improved.

9 Future Work

Most of the proposals for future work are given in section 7. A complete summary of possible future
work is the following:

• Improving the SURF-128 descriptor with a circular sample footprint and reduced dimensionality
by using different sample patterns

• Improving the methods to handle geometric affine invariance, particularly the measurement areas
and the descriptor

• Adding normalized image intensity cross-correlation for the matching

• Selecting measurement areas with several size scale factors for the descriptor, e.g. factors 1, 1.5,
2 and 3 of the scale of the detected feature, as suggested in [Mata02]

• Adding a point-based detector and matching on the features detected with each kind of detector
independently. The Fast Hessian detector from [BayH06] would be interesting, since it is fast,
uses little memory and much code can be reused from the SURF descriptor. Hessian-Affine from
[Miko06] is also interesting, since it handles affine invariance

• Handling more than two input images

• Evaluating the nearest-to-second-nearest ratio criterion and considering to change it such that,
the second nearest match is replaced with the average of the second nearest matchs from all other
input images

• Forming the complete pipeline for camera view estimation and eventually a full application

• Fine-tuning the methods to improve the overall performance and to make the methods work as
well as possible in each stage of a pipeline

• Evaluating how the MSER and Fast Level Set Transform (FLST) ([Oshe06] chapters 7 and 15,
[Case08], [Mona00] and [Mona99]) methods compare as feature detectors would be interesting

• Considering to take advantage of colour information

82

10 Conclusions

This report gives a quite comprehensive overview of feature detectors and feature descriptors, as well as
an overview of matching methods. This includes a detailed overview of previous work in the area with
very concrete conclusions with specific references to the relevant work.

A complete image feature detection and correspondence matching framework has also been built,
along with an evaluation framework for evaluating its performance. The implementation gives some
fairly usable results and the evaluation framework and the references given forms a stable basis for
improving it further.

The contributions of this report can be summarized as follows:

• A fairly detailed introduction to (section 2) and comparison of previous work (section 3) in the
area of feature based image correspondences

• A summary of concrete conclusions of previous work (section 4) with specific references

• Implemented (section 6) and, to some extent, evaluated (section 8) the performance of one way
of combining the Maximally Stable Extremal Region (MSER) detector from [Mata02] with the
Speeded-Up Robust Features (SURF) descriptor from [BayH06]

• Elaborated on the stability criterion (section 6.3.3) of the Maximally Stable Extremal Region
(MSER) detector from [Mata02], with suggestions for:

– Using the minimum values or the extent of the intensity ranges as measures of confidence
for detected regions

– Avoiding detection of minima close together on the histories of area change, which result in
almost identical regions on top of each other, by either introducing Hysteresis limits on the
minima or merging minima close together

– Exploring a different formula for region stability

• Suggested extensions for the Speeded-Up Robust Features (SURF) descriptor from [BayH06]:

– Sampling a circular region for the descriptor, which makes it possible to calculate descriptors
closer to the image boundaries than is otherwise possible with the SURF descriptor

– Warping the sample pattern of the descriptor, to allow using it as an affine invariant descriptor

– Suggested alternative sampling patterns, which reduce the dimensionality of the descriptor,
hopefully without decreasing its descriptive power, but this has not been evaluated

• Suggested other improvements to the implemented methods, as summarized in section 9

• Showed how the methods can be implemented elegantly and efficiently in a functional programming
language like Standard ML (the appendices)

The conclusions regarding the implementation are the following:

• The Maximally Stable Extremal Region (MSER) detector, combined with the Speeded-Up Robust
Features (SURF) descriptor can give fairly usable, but, so far, few feature correspondences

• The MSER detector handles at least some cases fairly well, but there are some parameters to
fine-tune and required improvements to be aware of, before it starts to work properly

83

• The SURF-128 descriptor seems very powerful and good at discriminating between features

• Handling affine invariance seems to be important for the MSER detector, so the conclusions
from previous work that, affine invariance may not be worthwhile, does not seem to hold for this
particular method. It may be more true for methods which detect features like corners, since these
kinds of features are probably distorted less by changes in camera viewpoint

• The MSER detector is by far the fastest part of the implementation, so for combining multiple
feature detectors in the same implementation, this method is not computationally expensive to
include; and it could probably be optimized even more

• It should be easy to optimize the current computational performance of the SURF-128 descriptor

• None of these methods (MSER and SURF-128) require a lot of memory

• Due to using Bin-Sort on pixel intensities in the MSER method, the current implementation is
limited to using 8bit images

• Due to the use of the Summed Area tables with unsigned 32-bit precision per pixel, the size of
the input images are currently limited to around 4096x4096 pixels (see Appendix A for details)

11 Acknowledgements

Thanks to Søren Ingvor Olsen for supervising this project with constructive feedback and good litterature
references. Thanks to Pascal Monasse for comments and references regarding the Fast Level Set
Transform (FLST) and its related methods. Thanks to Martin Elsman for the reference to the path-
halving optimization for the disjoint unifiable sets data structure. Thanks, in alphabetical order, to
David Lowe, Jiri Matas and Pascal Monasse for answering the author’s enquiries of patents on the
various methods1.

12 Appendices

12.1 A: Additional Implementation Details

This appendix, Appendix A, contains some general explanations of the implementation; things which
may be a bit tricky or relating to the software design.

The full source code for the Disjoint Unifiable Sets data structure is given in Appendix B. The
source code for the oriented Haar wavelet filter response is given in Appendix C. Appendix D contains
automated unit-test code for the brute-force two-way matching implementations. Appendix E is a log
of the execution of the implemented performance evaluation program.

12.1.1 Summed-Area Tables

There are a few details to be aware of, when implementing summed area tables. If we only consider the
input images as 8-bit grey-scale images, a summed area image with unsigned 32-bit precision per pixel
is only guaranted to work for input images of up to 4096x4096 pixels. This maximum input image size
is a limitation of the current implementation.

1Information regarding patents will not be given here, since many people working in the industry have employment
clauses, which disallows them to read about patents

84

Notice also that, the addition and subtractions must be done in the correct order for the summed
area look-ups, to avoid that the temporary values become negative or overflow, since Standard ML
checks for overflow in its Word32 module. An alternative here would be to use a representation, which
overflows in a well-defined way, such as the arithmetic operations used in C.

The check that we are inside the frame buffer boundary may be skipped, if we make sure that, we
ignore any detected features, which are so close to the frame buffer boundary that, the box used for
determining SURF descriptor orientation would not fit. This optimization is currently not done.

12.1.2 The SURF-128 Descriptor

In the calculation of the dominant orientation of vectors, we ignore all response vectors, which have a
length smaller than some small epsilon value. This is to avoid degeneracies and divisions by zero in the
angle calculations. If the final dominant orientation vector has a length below the same epsilon, which
could at least happen if there were no valid vectors left from the previous epsilon check, then the angle
is set to zero. Again, this is to avoid degeneracies and divisions by zero.

12.1.3 Elegant, Yet Efficient, Design in Standard ML

Some of the features in the Standard ML programming language can contribute to an elegant design.
A few examples worth noting are the parametric types and the module system.

The implementation of the Disjoint Unifiable Sets in Appendix B uses parameterized types. The
data structure is parameterized over which data the sets contain. Hence, the data structure can be used
for any application requiring a disjoint unifiable sets data structure. The two-way matching functions,
for which unit-tests are supplied in Appendix D, also use parameterized types. The type of descriptor
value is a parameter, meaning that, the implementation can been used for the descriptor matching in
the implementation, with 128-dimensional descriptors and an Euclidian distance metric, while allowing
for simple unit-tests to be created, as in Appendix D, where simple integers are used as descriptors.
Incidently, the one-way matching is similarly parameterized and has been used for both the descriptor
matching and for the computation of some of the performance measures for the evaluation, which also
require a one-way matching.

The Standard ML module system has also been used with great advantage. The best example is
probably that, most modules operating on images are parameterized by a frame buffer layout and a pixel
layout. For example, the MSER detector module is instantiated as:

structure MaximallyStableExtremalRegionDetectorRgba32 =

FMaximallyStableExtremalRegionDetector

(structure FbTraversal =

Rgba32FrameBufferTraversal

structure FbPixelLayout =

FrameBufferRgba32AsIntensity8BitInt

)

It is instantiated with an RGBA32 (Red, Green, Blue, Alpha) frame buffer layout module, which
abstracts the fact that, the frame buffer uses 32-bits per pixel. However, the MSER detector implemen-
tation does not depend on this and traverses the frame buffer in a way independent of the memory size
and layout of a pixel. The MSER detector module is also instantiated with a pixel layout module, which
interprets the pixel layout as a single 8bit integer, a discrete grey value in the range 0 to 255. Hence, if

85

we wanted to detect MSER regions on a different colour space than grey values of RGB pixels, it is a
matter of replacing the pixel layout module parameter.

All module instantiations in Standard ML are statically computed, meaning that, when compiled with
a decently optimizing compiler, such as MLton [MLto07], there should not be any performance penalty
associated with this. This has also been verified by the author on a previous occasion of doing frame
buffer rasterization.

12.2 B: Disjoint Unifiable Sets

This section presents the full implementation of the disjoint unifiable sets, described in section 6.1, since
this is an important data structure for the MSER method. The most important operations on the data
structure are implemented by the following functions:

• singleton: Creation of a singleton set

• unify: Unification of two sets

• findRepresentative: Find the representative element of a set, given any element of the set

• isRepresentative: Returns true for an element, if and only if it is a representative element of
its set

• sameElem: Determine whether two elements are the same. When used on representative elements,
this is equivalent to querying whether the two represented sets are the same set or two disjoint
sets

The basic data structure is described in [Corm90]. [Corm90] describes the optimizations: union by
rank and path compression. Union by rank has not been implemented here, but path compression is in
the uncommented part of the function findRepresentative. The code used (i.e. not uncommented)
for findRepresentative is known as path halving. Using path halving gave a slight improvement in
execution time over path compression, which seemed to be between 0.01 and 0.4 seconds in the MSER
detection timings in Appendix E, when that change was made. No performance decrease was observed in
any of the executions, so it is worth changing those ten lines of code. The image akropolh2002_6...,
for which MSER regions are detected many times in the log in Appendix E, is 1280x960 pixels, meaning
that, around 1.2 million sets are created and on the order of twice as many unify operations are performed.
The subsequent extraction of region histories (see section 6.3.3) are also part of the MSER timings in
Appendix E though, which also seems to take a significant amount of time and be worth optimizing.

signature UNIFIABLE_SETS =

sig

(* ’a t is the type of set elements, some of which are set representatives *)

type ’a t

(* The type of a function, which given two set elements, return the

two set representatives of the sets, ordered such that the first

returned set is the preferred one to survive a unify operation. *)

type ’a setorder = ’a t * ’a t -> ’a t * ’a t

(* Create a singleton set *)

val singleton : ’a -> ’a t

86

(* Get the value of the element *)

val getValue : ’a t -> ’a

(* Set a new value for the element *)

val setValue : ’a t * ’a -> unit

(* Returns whether a given set element is the

representative element of some set.

This property may change whenever a unify operation is done.

Iterating a known list of elements and filtering out only those,

for which this function returns true, yields the complete list of

disjoint sets in the iterated list of elements. *)

val isRepresentative : ’a t -> bool

(* Return whether or not two elements are the same *)

val sameElem : ’a t * ’a t -> bool

(* Find the representative element of the set,

which the given element is a member of. *)

val findRepresentative : ’a t -> ’a t

(* Given the function of type ’a setorder, for ordering the importance

of which set is to survive unification, it unifies two sets of

elements, given by a member element from each set. It returns

the representative element of the unified set and possibly the

representative of an annihilated set, if the given sets were disjoint. *)

val unify : ’a setorder -> ’a t * ’a t -> ’a t * ’a t option

end

functor FUnifiableSets() :> UNIFIABLE_SETS =

struct

(* ’a t is the type of set elements, some of which are set representatives *)

datatype ’a t =

Elem of

(* Whether this would be implemented as a ref of the record

or as a record with two ref fields, is a design choice. *)

{merged : ’a t option ref,

value : ’a ref

}

(* The type of a function, which given two set elements, return the

two set representatives of the sets, ordered such that the first

returned set is the preferred one to survive a unify operation. *)

type ’a setorder = ’a t * ’a t -> ’a t * ’a t

(* Create a singleton set *)

fun singleton value =

Elem

{merged = ref NONE,

value = ref value

}

87

(* Get the value of the element *)

fun getValue (Elem {merged, value}) =

!value

(* Set a new value for the element *)

fun setValue (Elem {merged, value}, newValue) =

value := newValue

(* Returns whether a given set element is the

representative element of some set.

This property may change whenever a unify operation is done.

Iterating a known list of elements and filtering out only those,

for which this function returns true, yields the complete list of

disjoint sets in the iterated list of elements. *)

fun isRepresentative (Elem {merged, value}) =

(* Only sets, which have not yet been updated to point to a merged set,

are representative sets *)

(case !merged of

SOME _ =>

false

| NONE =>

true

)

(* Return whether or not two elements are the same *)

fun sameElem (Elem {merged, value = _},

Elem {merged = merged’, value = _}) =

(* Set elements are uniquely identified by the ref field: merge *)

merged = merged’

(* Find the representative element of the set,

which the given element is a member of. *)

fun findRepresentative (elem as (Elem {merged, value})) =

(* Currently used implementation: Path halving

This implementation traverses two steps at a time and updates every

second traversed set to point "two steps closer to"

the representative set *)

(case !merged of

SOME (e1 as (Elem {merged = merged2, value = value2})) =>

(case !merged2 of

SOME e2 =>

let

(* Update link only at every second step *)

val () = merged := (SOME e2)

in

(* Recursively search for the representative.

Notice the tail-recursion, which improves efficiency *)

findRepresentative e2

end

| NONE =>

(* This is the representative element, return it *)

e1

)

88

| NONE =>

(* This is the representative element, return it *)

elem

)

(* Alternative implementation: Path Compression:

This implementation updates the paths of all traversed sets,

to point directly to the representative set, after it has been found. *)

(*

(case !merged of

SOME e =>

(* Recursively search for the representative, then update the

reference to point directly to that representative. *)

let

(* Notice: This is not tail-recursive *)

val rep = findRepresentative e

val () = merged := (SOME rep)

in

rep

end

| NONE =>

(* This is the representative element, return it *)

elem

)

*)

(* Given the function of type ’a setorder, for ordering the importance

of which set is to survive unification, it unifies two sets of

elements, given by a member element from each set. It returns

the representative element of the unified set and possibly the

representative of an annihilated set, if the given sets were disjoint. *)

fun unify setorder (elem1, elem2) =

let

val rep1 = findRepresentative elem1

val rep2 = findRepresentative elem2

in

if sameElem (rep1, rep2) then

(* Sets are already unified *)

(rep1, NONE)

else

let

(* Order elements according to preference of survival *)

val (rep1, rep2 as (Elem {merged, value})) = setorder (rep1, rep2)

(* Annihilate rep2 and make rep1 the new representative *)

val _ = merged := (SOME rep1)

in

(* Return the unified set and the annihilated set *)

(rep1, SOME rep2)

end

end

end

structure UnifiableSets = FUnifiableSets()

89

Figure 41: This illustrates part of the computation of the oriented Haar-wavelet filter response.
The implementation first determines the four (real valued) corners of an upright box. These are
illustrated by small dots. Then rotates the corners according to the orientation of the box, where
the resulting four (integer rounded) corners are used for determining a bounding box. These corners
are shown as black squares. Within this bounding box, each pixel is traversed. For each traversed
pixel, shown as a white square, within this bounding box, the pixel is rotated in the opposite
direction as the orientation of the box, in order to transform the pixel into the original upright box,
where it is simple to compute the relevant Haar wavelet coefficient

12.3 C: Oriented Haar-Wavelet Filter Response

The source code for the oriented Haar-wavelet filter response, as used in section 6.6.2, is given below.
The implementation first determines the four (real valued) corners of an upright box, then rotates them
according to the orientation of the box, where the resulting four (integer rounded) corners are used for
determining a bounding box. Within this bounding box, each pixel is traversed. For each traversed pixel
within this bounding box, the pixel is rotated in the opposite direction as the orientation of the box,
in order to transform the pixel into the original upright box, where it is simple to compute the relevant
Haar wavelet coefficient. This is illustrated in in figure 41.

We assume that the following functions have been implemented, in addition to the Standard ML
Basis Library [SMLB04] modules:

• Matrix2x2.Const.rotate:
Create a 2x2 rotation matrix with a given angle

• Matrix2x2.Trans.transformPoint:
Transform a 2D point with a 2x2 matrix

• BoundingBox2D.boundPoints:
Calculates the bounds of a list of 2D points, in coordinates of type real

• Point2D.subtract:
Subtract two 2D points from each other, in coordinates of type real

• IVector2D.add:
Adds two 2D vectors to each other, in coordinates of type int

90

• IVector2D.zeroValue:
The constant value {x = 0, y = 0}

• FbTraversal.getOrigin:
Gets the upper-left pixel coordinates of the frame buffer

• FbTraversal.getExtent:
Gets the lower-right pixel coordinates of the frame buffer, or actually, one pixel below and to the
right of it, referred to as ”exclusive” coordinates

• getPosPixelIntensity:
Get the 8-bit integer pixel intensity at the given frame buffer pixel position

• Int.forl:
A higher-order function for looping on integers. The first parameter is the starting value, the
second is the number of iterations, the third is the step-value per iteration, the fourth is the
accumulating iteration function and the last parameter, is the initial accumulation value. It is
implemented in the publicly available project [AMLB09] and will be documented in an upcoming
report

(* Create a pair of 2x2 rotation matrices:

The first one rotates angle (in radians) counter-clockwise

(mathematical standard for angles). The second one clock-wise. *)

fun rotationMatricesFromAngle angle =

(* Both angles are negated here, becuase the transformation is in

image pixel coordinates, where the y-axis grows downwards.

This reverses the angle, compared to mathematical standards *)

(Matrix2x2.Const.rotate (~angle),

Matrix2x2.Const.rotate angle)

(* Filter with the oriented Haar wavelet basis for X and Y axis changes,

respectively, where the orientation is given by an angle *)

fun filterOrientedHaarXyFromRadiusAnglePos

fbArea (radius, angle) =

let

(* Compute rotation matrices once *)

val (mRotAngle, mRotNegAngle) = rotationMatricesFromAngle angle

(* Calculate the four corners of the upright filter domain *)

val upLeft = {x = ~radius, y = ~radius}

val upRight = {x = radius, y = ~radius}

val downLeft = {x = ~radius, y = radius}

val downRight = {x = radius, y = radius}

(* Calculate the four corners when rotated *)

val rotUpLeft = Matrix2x2.Trans.transformPoint mRotAngle upLeft

val rotUpRight = Matrix2x2.Trans.transformPoint mRotAngle upRight

val rotDownLeft = Matrix2x2.Trans.transformPoint mRotAngle downLeft

val rotDownRight = Matrix2x2.Trans.transformPoint mRotAngle downRight

(* Get the dimensions of the frame buffer area *)

val {x = origX, y = origY} = FbTraversal.getOrigin fbArea

91

val {x = extX , y = extY } = FbTraversal.getExtent fbArea

(* Filter function for a given position, for staged computation *)

fun filterAtPos pos =

let

(* Calculate bounds of rotated filter domain centered at pos *)

val {xmin, ymin, xmax, ymax} =

BoundingBox2D.boundPoints

[Point2D.add(pos, rotUpLeft),

Point2D.add(pos, rotUpRight),

Point2D.add(pos, rotDownLeft),

Point2D.add(pos, rotDownRight)]

(* Calculate integer pixel bounds:

{x|y}min values are "inclusive" pixel coordinates while

{x|y}max values are "exclusive" pixel coordinates *)

val xmin = Real.floor xmin

val ymin = Real.floor ymin

val xmax = Real.ceil xmax

val ymax = Real.ceil ymax

(* Intersect area with frame buffer area, where min values

are also "inclusive" and max values "exclusive" *)

val xmin = Int.max(xmin, origX)

val ymin = Int.max(ymin, origY)

val xmax = Int.min(xmax, extX)

val ymax = Int.min(ymax, extY)

(* Calculate iteration dimensions for sampling pixels *)

val itersX = xmax - xmin

val itersY = ymax - ymin

(* Function for making a filter sample at given pixel center p *)

fun pixelSample (pixel as {x = ix, y = iy}) =

let

(* Calculate pixel center coordinate, by adding 0.5 and

move it back to the coordinate system centered at

(0, 0), by subtracting pos *)

val p = Point2D.subtract

({x = Real.fromInt ix + 0.5,

y = Real.fromInt iy + 0.5},

pos)

(* Rotate p back into the upright filter domain *)

val {x, y} = Matrix2x2.Trans.transformPoint

mRotNegAngle p

in

(* Check if the new point is within the upright domain *)

if x >= ~radius andalso

x <= radius andalso

y >= ~radius andalso

y <= radius then

let

92

(* Get pixel value of the sampled pixel *)

val pixelInt = getPosPixelIntensity (fbArea, pixel)

in

(* Calculate responses for the Haar X and Y filters *)

{x = if x > 0.0 then

pixelInt

else

~pixelInt,

y = if y < 0.0 then

pixelInt

else

~pixelInt

}

end

else

(* outside the filter domain, no filter response *)

{x = 0, y = 0}

end

(* Function making a pixel sample and adding it to

the accumulated filter result *)

fun accPixelSample y (x, acc) =

IVector2D.add(pixelSample {x = x, y = y}, acc)

(* Iterate function accPixelSample over one row of pixels *)

fun iterRow (y, acc) =

Int.forl (xmin, Word.fromInt itersX, 1,

accPixelSample y, acc)

(* Iterate over the calculated rectangular area of pixels *)

fun sampleArea () =

if itersY > 0 andalso itersX > 0 then

Int.forl (ymin, Word.fromInt itersY, 1,

iterRow, IVector2D.zeroValue)

else

IVector2D.zeroValue

in

(* Calculate the X and Y Haar responses for the area of pixels *)

sampleArea ()

end

in

(* Return function for second stage of the staged computation *)

filterAtPos

end

12.4 D: Unit-Test for Brute-Force Matching Strategies

The source code for the unit-tests for three different brute-force two-way matching strategies, as de-
scribed in section 6.7. The matching strategies are implemented by the functions:

• M.conservativeBruteForceMatch

93

• M.crossCorrelatedBruteForceMatch

• M.aggressiveBruteForceMatch

These functions all have the Standard ML type:

’a metric -> ((’a * ’b) list * (’a * ’b) list) -> ((’a * ’b) * (’a * ’b)) list

where the type ’a metric is defined by:

(* A metric, for the distance between two discriptors *)

type ’a metric = ’a * ’a -> real

This interface means that, we can use any type of value as descriptor, since it is parameterized by
the type ’a. The metric determines the distance between two descriptor values as a real value.

We assume that, the functions compareInt and compareIiList have been implemented, for com-
paring two integers and two lists of pairs of integers, respectively, in addition to the Standard ML Basis
Library [SMLB04] modules. The function TestUtil.doTest runs the given list of named test functions,
to assure that they all return true.

fun testBasic () =

let

(* The first component of the pairs in these lists are the

integer "descriptor" values whose distance we measure.

The second component of the pairs can carry arbitrary data,

so we carry a unique identifier for each list element,

which is what we use for the comparisons below. *)

val regions1 = [(96, 1), (1000, 2), (900, 3), (500, 4),

(103, 5), (1600, 6), (57, 7), (2000, 8)]

val regions2 = [(32, 10), (1050, 20), (2050, 30), (1001, 40),

(950, 50), (101, 60), (102, 70), (700, 80)]

(* Run the three different kind of matching algorithms,

with both possible orders of the two list parameters for each. *)

val cc12 = M.conservativeBruteForceMatch intDist (regions1, regions2)

val cc21 = M.conservativeBruteForceMatch intDist (regions2, regions1)

val ccc12 = M.crossCorrelatedBruteForceMatch intDist (regions1, regions2)

val ccc21 = M.crossCorrelatedBruteForceMatch intDist (regions2, regions1)

val ac12 = M.aggressiveBruteForceMatch intDist (regions1, regions2)

val ac21 = M.aggressiveBruteForceMatch intDist (regions2, regions1)

fun removeDescriptors ((_, d1), (_, d2)) =

(d1, d2)

(* The match also returns the original descriptors - remove them *)

val cc12 = List.map removeDescriptors cc12

val cc21 = List.map removeDescriptors cc21

val ac12 = List.map removeDescriptors ac12

val ac21 = List.map removeDescriptors ac21

val ccc12 = List.map removeDescriptors ccc12

94

val ccc21 = List.map removeDescriptors ccc21

fun swap (i1, i2) = (i2, i1)

(* Setup the expected results *)

val cexpected12 = [(1, 60), (2, 20), (2, 40), (2, 50), (3, 50), (3, 80),

(4, 80), (5, 60), (5, 70), (7, 10), (8, 30)]

val cexpected21 = List.map swap

[(7, 10), (2, 40), (3, 50), (2, 50), (1, 60), (5, 60),

(2, 20), (8, 30), (5, 70), (3, 80), (4, 80)]

val aexpected12 = [(2, 40), (3, 50), (5, 70), (7, 10), (8, 30)]

val aexpected21 = List.map swap [(7, 10), (2, 40), (5, 70), (3, 80), (8, 30)]

val ccexpected12 = [(2, 40), (5, 70), (7, 10), (8, 30)]

val ccexpected21 = List.map swap [(7, 10), (5, 70), (2, 40), (8, 30)]

in

(* Execute the tests *)

TestUtil.doTest

[("length ac12", compareInt (List.length ac12) 5),

("length ac21", compareInt (List.length ac21) 5),

("ac12", compareIiList ac12 aexpected12),

("ac21", compareIiList ac21 aexpected21),

("length cc12", compareInt (List.length cc12) 11),

("length cc21", compareInt (List.length cc21) 11),

("cc12", compareIiList cc12 cexpected12),

("cc21", compareIiList cc21 cexpected21),

("length ccc12", compareInt (List.length ccc12) 4),

("length ccc21", compareInt (List.length ccc21) 4),

("ccc12", compareIiList ccc12 ccexpected12),

("ccc21", compareIiList ccc21 ccexpected21)

]

end

12.5 E: Log of the Execution of the Performance Evaluation

This is the output of running the implemented performance evaluation program on a Ubuntu Linux 8.04
on a 3Ghz Pentium Dual Core 2 with 4GB (i.e. plenty) of memory.

Detecting MSER regions (starting timer)

Detected 64 (upper) + 60 (lower) = 124 MSER regions [2.15secs]

Saving image ../outputData/images/akropolh2002_6_mserAnoq09Hysteresis_regions.bmp

Detecting MSER regions (starting timer)

Detected 263 (upper) + 338 (lower) = 601 MSER regions [1.53secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02HysteresisDelta20_regions.bmp

Detecting MSER regions (starting timer)

Detected 6439 (upper) + 5907 (lower) = 12346 MSER regions [1.01secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02MergedDelta5_regions.bmp

Detecting MSER regions (starting timer)

Detected 8672 (upper) + 7690 (lower) = 16362 MSER regions [0.96secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02Delta5_regions.bmp

Detecting MSER regions (starting timer)

95

Detected 4201 (upper) + 3791 (lower) = 7992 MSER regions [0.98secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02MergedDelta10_regions.bmp

Detecting MSER regions (starting timer)

Detected 5961 (upper) + 5049 (lower) = 11010 MSER regions [1.19secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02Delta10_regions.bmp

Detecting MSER regions (starting timer)

Detected 460 (upper) + 440 (lower) = 900 MSER regions [1.09secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02MergedHalfMeanFilterDelta20_regions.bmp

Detecting MSER regions (starting timer)

Detected 1786 (upper) + 1574 (lower) = 3360 MSER regions [1.30secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02MergedDelta20_regions.bmp

Detecting MSER regions (starting timer)

Detected 2859 (upper) + 2268 (lower) = 5127 MSER regions [1.27secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02Delta20_regions.bmp

Detecting MSER regions (starting timer)

Detected 174 (upper) + 98 (lower) = 272 MSER regions [1.28secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02MergedDelta50_regions.bmp

Detecting MSER regions (starting timer)

Detected 302 (upper) + 152 (lower) = 454 MSER regions [1.29secs]

Saving image ../outputData/images/akropolh2002_6_mserMata02Delta50_regions.bmp

Detecting MSER regions (starting timer)

Detected 270 (upper) + 89 (lower) = 359 MSER regions [0.31secs]

Saving image ../outputData/images/ValbonneChurch_009_mserMata02MergedDelta20_regions.bmp

Detecting MSER regions (starting timer)

Detected 152 (upper) + 35 (lower) = 187 MSER regions [0.31secs]

Saving image ../outputData/images/ValbonneChurch_009_mserMata02MergedHalfMeanDelta20_regions.bmp

Detecting MSER regions (starting timer)

Detected 66 (upper) + 21 (lower) = 87 MSER regions [0.40secs]

Saving image ../outputData/images/bikes3_mser_regions.bmp

Detecting MSER regions (starting timer)

Detected 239 (upper) + 84 (lower) = 323 MSER regions [0.52secs]

Saving image ../outputData/images/bikes1_mser_regions.bmp

Detecting MSER regions (starting timer)

Detected 460 (upper) + 440 (lower) = 900 MSER regions [1.30secs]

Saving image ../outputData/images/akropolh2002_6_mser_regions.bmp

Detecting MSER regions (starting timer)

Detected 481 (upper) + 428 (lower) = 909 MSER regions [1.23secs]

Saving image ../outputData/images/akropolh2002_7_mser_regions.bmp

Detecting MSER regions (starting timer)

Detected 534 (upper) + 373 (lower) = 907 MSER regions [0.46secs]

Saving image ../outputData/images/boat1_mser_regions.bmp

Detecting MSER regions (starting timer)

Detected 481 (upper) + 326 (lower) = 807 MSER regions [0.37secs]

Saving image ../outputData/images/boat6_mser_regions.bmp

Detected 460 (upper) + 440 (lower) = 900 MSER regions [1.30secs]

Calculating SURF-128 descriptors took: [2.41secs]

Detected 481 (upper) + 428 (lower) = 909 MSER regions [1.20secs]

Calculating SURF-128 descriptors took: [1.82secs]

Correspondences: 15 (upper) + 29 (lower) = 44. 0 are correct. Matching: [0.14secs]

Saving image ../outputData/images/akropolh2002_6_match67.bmp

Saving image ../outputData/images/akropolh2002_7_match67.bmp

Detected 208 (upper) + 71 (lower) = 279 MSER regions [0.42secs]

Calculating SURF-128 descriptors took: [0.53secs]

96

Detected 218 (upper) + 86 (lower) = 304 MSER regions [0.39secs]

Calculating SURF-128 descriptors took: [0.48secs]

Correspondences: 24 (upper) + 3 (lower) = 27. 25 are correct. Matching: [0.00secs]

Saving image ../outputData/images/graf1_match12.bmp

Saving image ../outputData/images/graf2_match12.bmp

Detected 208 (upper) + 71 (lower) = 279 MSER regions [0.44secs]

Calculating SURF-128 descriptors took: [0.56secs]

Detected 265 (upper) + 69 (lower) = 334 MSER regions [0.39secs]

Calculating SURF-128 descriptors took: [0.67secs]

Correspondences: 9 (upper) + 2 (lower) = 11. 9 are correct. Matching: [0.00secs]

Saving image ../outputData/images/graf1_match13.bmp

Saving image ../outputData/images/graf3_match13.bmp

Detected 208 (upper) + 71 (lower) = 279 MSER regions [0.44secs]

Calculating SURF-128 descriptors took: [0.56secs]

Detected 211 (upper) + 108 (lower) = 319 MSER regions [0.40secs]

Calculating SURF-128 descriptors took: [0.55secs]

Correspondences: 6 (upper) + 2 (lower) = 8. 5 are correct. Matching: [0.00secs]

Saving image ../outputData/images/graf1_match14.bmp

Saving image ../outputData/images/graf4_match14.bmp

Detected 208 (upper) + 71 (lower) = 279 MSER regions [0.41secs]

Calculating SURF-128 descriptors took: [0.56secs]

Detected 237 (upper) + 117 (lower) = 354 MSER regions [0.42secs]

Calculating SURF-128 descriptors took: [0.63secs]

Correspondences: 4 (upper) + 2 (lower) = 6. 0 are correct. Matching: [0.00secs]

Saving image ../outputData/images/graf1_match15.bmp

Saving image ../outputData/images/graf5_match15.bmp

Detected 208 (upper) + 71 (lower) = 279 MSER regions [0.44secs]

Calculating SURF-128 descriptors took: [0.53secs]

Detected 259 (upper) + 123 (lower) = 382 MSER regions [0.42secs]

Calculating SURF-128 descriptors took: [0.61secs]

Correspondences: 3 (upper) + 0 (lower) = 3. 0 are correct. Matching: [0.00secs]

Saving image ../outputData/images/graf1_match16.bmp

Saving image ../outputData/images/graf6_match16.bmp

Saving image ../outputData/images/Graph_grafimages_repeatability.bmp

Saving image ../outputData/images/Graph_grafimages_locationaccuracy12.bmp

Saving image ../outputData/images/Graph_grafimages_locationaccuracy14.bmp

Saving image ../outputData/images/Graph_grafimages_recall.bmp

Saving image ../outputData/images/Graph_grafimages_oneprecision.bmp

Detected 679 (upper) + 544 (lower) = 1223 MSER regions [0.86secs]

Calculating SURF-128 descriptors took: [1.96secs]

Detected 638 (upper) + 503 (lower) = 1141 MSER regions [0.64secs]

Calculating SURF-128 descriptors took: [1.94secs]

Correspondences: 20 (upper) + 22 (lower) = 42. 16 are correct. Matching: [0.11secs]

Saving image ../outputData/images/wall1_match12.bmp

Saving image ../outputData/images/wall2_match12.bmp

Detected 679 (upper) + 544 (lower) = 1223 MSER regions [0.86secs]

Calculating SURF-128 descriptors took: [1.98secs]

Detected 639 (upper) + 501 (lower) = 1140 MSER regions [0.64secs]

Calculating SURF-128 descriptors took: [1.76secs]

Correspondences: 29 (upper) + 20 (lower) = 49. 14 are correct. Matching: [0.10secs]

Saving image ../outputData/images/wall1_match13.bmp

Saving image ../outputData/images/wall3_match13.bmp

Detected 679 (upper) + 544 (lower) = 1223 MSER regions [0.86secs]

97

Calculating SURF-128 descriptors took: [1.98secs]

Detected 636 (upper) + 514 (lower) = 1150 MSER regions [0.65secs]

Calculating SURF-128 descriptors took: [1.72secs]

Correspondences: 30 (upper) + 27 (lower) = 57. 6 are correct. Matching: [0.10secs]

Saving image ../outputData/images/wall1_match14.bmp

Saving image ../outputData/images/wall4_match14.bmp

Detected 679 (upper) + 544 (lower) = 1223 MSER regions [0.85secs]

Calculating SURF-128 descriptors took: [1.98secs]

Detected 691 (upper) + 588 (lower) = 1279 MSER regions [0.61secs]

Calculating SURF-128 descriptors took: [1.95secs]

Correspondences: 21 (upper) + 16 (lower) = 37. 2 are correct. Matching: [0.12secs]

Saving image ../outputData/images/wall1_match15.bmp

Saving image ../outputData/images/wall5_match15.bmp

Detected 679 (upper) + 544 (lower) = 1223 MSER regions [0.90secs]

Calculating SURF-128 descriptors took: [2.05secs]

Detected 681 (upper) + 594 (lower) = 1275 MSER regions [0.62secs]

Calculating SURF-128 descriptors took: [1.92secs]

Correspondences: 22 (upper) + 9 (lower) = 31. 1 are correct. Matching: [0.11secs]

Saving image ../outputData/images/wall1_match16.bmp

Saving image ../outputData/images/wall6_match16.bmp

Saving image ../outputData/images/Graph_wallimages_repeatability.bmp

Saving image ../outputData/images/Graph_wallimages_locationaccuracy12.bmp

Saving image ../outputData/images/Graph_wallimages_recall.bmp

Saving image ../outputData/images/Graph_wallimages_oneprecision.bmp

Detected 534 (upper) + 373 (lower) = 907 MSER regions [0.42secs]

Calculating SURF-128 descriptors took: [2.33secs]

Detected 629 (upper) + 369 (lower) = 998 MSER regions [0.43secs]

Calculating SURF-128 descriptors took: [2.55secs]

Correspondences: 60 (upper) + 38 (lower) = 98. 80 are correct. Matching: [0.08secs]

Saving image ../outputData/images/boat1_match12.bmp

Saving image ../outputData/images/boat2_match12.bmp

Detected 534 (upper) + 373 (lower) = 907 MSER regions [0.39secs]

Calculating SURF-128 descriptors took: [2.34secs]

Detected 512 (upper) + 338 (lower) = 850 MSER regions [0.52secs]

Calculating SURF-128 descriptors took: [2.38secs]

Correspondences: 56 (upper) + 30 (lower) = 86. 59 are correct. Matching: [0.07secs]

Saving image ../outputData/images/boat1_match13.bmp

Saving image ../outputData/images/boat3_match13.bmp

Detected 534 (upper) + 373 (lower) = 907 MSER regions [0.40secs]

Calculating SURF-128 descriptors took: [2.35secs]

Detected 366 (upper) + 201 (lower) = 567 MSER regions [0.44secs]

Calculating SURF-128 descriptors took: [1.66secs]

Correspondences: 23 (upper) + 20 (lower) = 43. 9 are correct. Matching: [0.05secs]

Saving image ../outputData/images/boat1_match14.bmp

Saving image ../outputData/images/boat4_match14.bmp

Detected 534 (upper) + 373 (lower) = 907 MSER regions [0.44secs]

Calculating SURF-128 descriptors took: [2.38secs]

Detected 276 (upper) + 147 (lower) = 423 MSER regions [0.48secs]

Calculating SURF-128 descriptors took: [1.28secs]

Correspondences: 18 (upper) + 24 (lower) = 42. 8 are correct. Matching: [0.03secs]

Saving image ../outputData/images/boat1_match15.bmp

Saving image ../outputData/images/boat5_match15.bmp

Detected 534 (upper) + 373 (lower) = 907 MSER regions [0.40secs]

98

Calculating SURF-128 descriptors took: [2.30secs]

Detected 481 (upper) + 326 (lower) = 807 MSER regions [0.40secs]

Calculating SURF-128 descriptors took: [2.45secs]

Correspondences: 18 (upper) + 12 (lower) = 30. 0 are correct. Matching: [0.07secs]

Saving image ../outputData/images/boat1_match16.bmp

Saving image ../outputData/images/boat6_match16.bmp

Saving image ../outputData/images/Graph_boatimages_repeatability.bmp

Saving image ../outputData/images/Graph_boatimages_locationaccuracy12.bmp

Saving image ../outputData/images/Graph_boatimages_locationaccuracy14.bmp

Saving image ../outputData/images/Graph_boatimages_recall.bmp

Saving image ../outputData/images/Graph_boatimages_oneprecision.bmp

Detected 239 (upper) + 84 (lower) = 323 MSER regions [0.60secs]

Calculating SURF-128 descriptors took: [1.10secs]

Detected 150 (upper) + 25 (lower) = 175 MSER regions [0.43secs]

Calculating SURF-128 descriptors took: [0.66secs]

Correspondences: 31 (upper) + 15 (lower) = 46. 36 are correct. Matching: [0.00secs]

Saving image ../outputData/images/bikes1_match12.bmp

Saving image ../outputData/images/bikes2_match12.bmp

Detected 239 (upper) + 84 (lower) = 323 MSER regions [0.56secs]

Calculating SURF-128 descriptors took: [1.04secs]

Detected 66 (upper) + 21 (lower) = 87 MSER regions [0.39secs]

Calculating SURF-128 descriptors took: [0.46secs]

Correspondences: 18 (upper) + 11 (lower) = 29. 22 are correct. Matching: [0.00secs]

Saving image ../outputData/images/bikes1_match13.bmp

Saving image ../outputData/images/bikes3_match13.bmp

Detected 239 (upper) + 84 (lower) = 323 MSER regions [0.60secs]

Calculating SURF-128 descriptors took: [1.10secs]

Detected 70 (upper) + 17 (lower) = 87 MSER regions [0.40secs]

Calculating SURF-128 descriptors took: [0.47secs]

Correspondences: 14 (upper) + 7 (lower) = 21. 12 are correct. Matching: [0.00secs]

Saving image ../outputData/images/bikes1_match14.bmp

Saving image ../outputData/images/bikes4_match14.bmp

Detected 239 (upper) + 84 (lower) = 323 MSER regions [0.53secs]

Calculating SURF-128 descriptors took: [1.07secs]

Detected 61 (upper) + 17 (lower) = 78 MSER regions [0.40secs]

Calculating SURF-128 descriptors took: [0.41secs]

Correspondences: 14 (upper) + 5 (lower) = 19. 13 are correct. Matching: [0.00secs]

Saving image ../outputData/images/bikes1_match15.bmp

Saving image ../outputData/images/bikes5_match15.bmp

Detected 239 (upper) + 84 (lower) = 323 MSER regions [0.56secs]

Calculating SURF-128 descriptors took: [1.04secs]

Detected 41 (upper) + 16 (lower) = 57 MSER regions [0.36secs]

Calculating SURF-128 descriptors took: [0.30secs]

Correspondences: 14 (upper) + 6 (lower) = 20. 6 are correct. Matching: [0.00secs]

Saving image ../outputData/images/bikes1_match16.bmp

Saving image ../outputData/images/bikes6_match16.bmp

Saving image ../outputData/images/Graph_bikesimages_repeatability.bmp

Saving image ../outputData/images/Graph_bikesimages_locationaccuracy12.bmp

Saving image ../outputData/images/Graph_bikesimages_locationaccuracy14.bmp

Saving image ../outputData/images/Graph_bikesimages_recall.bmp

Saving image ../outputData/images/Graph_bikesimages_oneprecision.bmp

Detected 155 (upper) + 141 (lower) = 296 MSER regions [0.45secs]

Calculating SURF-128 descriptors took: [0.46secs]

99

Detected 155 (upper) + 103 (lower) = 258 MSER regions [0.40secs]

Calculating SURF-128 descriptors took: [0.36secs]

Correspondences: 32 (upper) + 8 (lower) = 40. 35 are correct. Matching: [0.00secs]

Saving image ../outputData/images/leuven1_match12.bmp

Saving image ../outputData/images/leuven2_match12.bmp

Detected 155 (upper) + 141 (lower) = 296 MSER regions [0.44secs]

Calculating SURF-128 descriptors took: [0.46secs]

Detected 128 (upper) + 72 (lower) = 200 MSER regions [0.44secs]

Calculating SURF-128 descriptors took: [0.23secs]

Correspondences: 19 (upper) + 10 (lower) = 29. 22 are correct. Matching: [0.00secs]

Saving image ../outputData/images/leuven1_match13.bmp

Saving image ../outputData/images/leuven3_match13.bmp

Detected 155 (upper) + 141 (lower) = 296 MSER regions [0.43secs]

Calculating SURF-128 descriptors took: [0.46secs]

Detected 124 (upper) + 53 (lower) = 177 MSER regions [0.41secs]

Calculating SURF-128 descriptors took: [0.19secs]

Correspondences: 10 (upper) + 7 (lower) = 17. 11 are correct. Matching: [0.00secs]

Saving image ../outputData/images/leuven1_match14.bmp

Saving image ../outputData/images/leuven4_match14.bmp

Detected 155 (upper) + 141 (lower) = 296 MSER regions [0.47secs]

Calculating SURF-128 descriptors took: [0.45secs]

Detected 141 (upper) + 39 (lower) = 180 MSER regions [0.34secs]

Calculating SURF-128 descriptors took: [0.23secs]

Correspondences: 7 (upper) + 8 (lower) = 15. 7 are correct. Matching: [0.00secs]

Saving image ../outputData/images/leuven1_match15.bmp

Saving image ../outputData/images/leuven5_match15.bmp

Detected 155 (upper) + 141 (lower) = 296 MSER regions [0.46secs]

Calculating SURF-128 descriptors took: [0.43secs]

Detected 95 (upper) + 30 (lower) = 125 MSER regions [0.32secs]

Calculating SURF-128 descriptors took: [0.10secs]

Correspondences: 8 (upper) + 10 (lower) = 18. 4 are correct. Matching: [0.00secs]

Saving image ../outputData/images/leuven1_match16.bmp

Saving image ../outputData/images/leuven6_match16.bmp

Saving image ../outputData/images/Graph_leuvenimages_repeatability.bmp

Saving image ../outputData/images/Graph_leuvenimages_locationaccuracy12.bmp

Saving image ../outputData/images/Graph_leuvenimages_recall.bmp

Saving image ../outputData/images/Graph_leuvenimages_oneprecision.bmp

References

[AMLB09] Online reference for the Ánoq SML Basis Library (0.8.2), by Ánoq of the Sun, 2009-05-18:
http://www.hardcoreprocessing.com/pro/anoqsmlbasis/

[Brow02] M. Brown, D. Lowe. ”Invariant Features from Interest Point Groups”. In BMVC. 2002.

[Brow04] M. Brown, R. Szeliski and S. Winder. ”Multi-image Matching using Multi-scale Oriented
Patches”. In IEEE Computer Society Conference of Computer Vision and Pattern Recognition
(CVPR 2005), (San Diego, CA), Volume I, p. 510-517. June 2005.

[BayH06] Herbert Bay, Tinne Tuytelaars, Luc Van Gool. ”SURF: Speeded Up Robust Features”. 2006.

100

[Case08] Vincent Caselles and Pascal Monasse. Geometric Description of Topographic Maps and Ap-
plications to Image Processing (preprint). September 1, 2008.

[Chum05] O. Chum and J. Matas. ”Matching with PROSAC - PROgressive SAmple Consensus”. In
IEEE Computer Society Conference of Computer Vision and Pattern Recognition (CVPR 2005),
(San Diego, CA), Volume I, p. 220-226. June 2005.

[Corm90] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest. An Introduction to Algorithms.
The MIT Press, 1990.

[Crow84] Franklin C. Crow. ”Summed-Area Tables for Texture Mapping”. In SIGGRAPH Conference
Proceedings of Computer Graphics Volume 18, 3, July 1984. ACM, 1984.

[Cyga09] Boguslaw Cyganek, J. Paul Siebert. An Introduction to 3D Computer Vision Techniques and
Algorithms. John Wiley & Sons Ltd, 2009.

[Dufo02] Yves Dufournaud, Cordelia Schmid and Radu Horaud, Image Matching with Scale Adjustment.
Scientific report, INRIA, 2002.

[Fole96] Foley, van Dam, Feiner, Hughes. Computer Graphics Principles and Practice. Addison-Wesley
1990-1996.

[Harr88] C. Harris and M. Stephens. ”A Combined Corner and Edge Detector”. In Alvey Vision Con-
ference, pages 147-151. 1998.

[Hart03] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision, Second
Edition. Cambridge University Press, 2003.

[HystWi] Explanation of Hysteresis on Wikipedia, as seen on the 10th of September 2009:
http://en.wikipedia.org/wiki/Hysteresis

[Koen84] J. Koenderink. ”The Structure of Images”. In Biological Cybernetics 50 (1984), p. 363-370.
1984.

[Lowe04] David G. Lowe. ”Distinctive Image Features from Scale-Invariant Keypoints”. In International
Journal of Computer Vision, 2004. January 5, 2004.

[Luca81] B. Lucas and T. Kanade. ”An Interative Image Registration Technique with an Application to
Stereo Vision”. In Proceedings of the 7th International Joint Conference on Artificial Intelligence,
pages 674-679, 1981.

[Mata02] J. Matas, O. Chum, M. Urban, T. Pajdla. ”Robust Wide Baseline Stereo from Maximally
Stable Extremal Regions”. In Proc. British Machine Vision Conference BMVC2002, 2002.

[Miko02] Krystian Mikolajczyk. Detection of Local Features Invariant to Affine Transformations. Ph.D.
thesis, Institut National Polytechnique de Grenoble, France, 2002.

[Miko04] Krystian Mikolajczyk, Cordelia Schmid. ”Scale & Affine Invariant Interest Point Detectors”. In
International Journal of Computer Vision 60(1), pages 61-83. Kluwer Academic Publishers, 2004.

[Miko05] Krystian Mikolajczyk, Cordelia Schmid. ”A Performance Evaluation of Local Descriptors”. In
Ieee Transactions on Pattern Analysis and Machine Intelligence, volume 27, No. 10, p. 1615-1630.
October 2005.

101

[Miko06] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir,
L. Van Gool. ”A Comparison of Affine Region Detectors”. In International Journal of Computer
Vision. Springer Science + Business Media Inc. 2006.

[Moll99] Tomas Möller, Eric Haines. Real-Time Rendering. A. K. Peters 1999.

[Mona99] Pascal Monasse. ”Contrast Invariant Registration of Images”. In Proc. of Int. Conf. on Acous-
tics, Speech and Signal Processing p. 3221-3224, Phoenix Arizona, 1999.

[Mona00] Pascal Monasse, Frédéric Giuchard. ”Fast Computation of a Contrast-invariant Image Rep-
resentation”. In IEEE Transactions on Image Processing p. 860-872, Volume 9, Issue 5, 2000.

[MLto07] Online reference for the MLton compiler, by Stephen Weeks et al, version 20070826:
http://www.mlton.org

[Neub06] Alexander Neubeck and Luc Van Gool. ”Efficient Non-Maximum Suppression”. In 18th Inter-
national Conference on Pattern Recognition (ICPR) 2006, volume 3, pages 850-855. 2006.

[Oshe06] Stanley Osher, Nikos Paragios (Editors). Geometric Level Set Methods in Imaging, Vision and
Graphics. Springer Science+Business Media LLC, 2006.

[Poll00] Marc Pollefeys. SIGGRAPH 2000 Course Notes 12: Obtaining 3D Models With a Hand-Held
Camera. ACM SIGGRAPH, 2000.

[Prit03] D. Pritchard and W. Heidrich. ”Cloth Motion Capture”. In Computer Graphics Forum (Euro-
graphics 2003), 22(3), pages 263-271. 2003.

[SMLB04] Online reference for the Standard ML Basis Library (2004 edition), by John Reppy et al:
http://www.standardml.org/Basis/

[Szel06] Richard Szeliski. Image Alignment and Stitching: A Tutorial. Foundations and Trends in Com-
puter Graphics and Vision 2:1 (2006). now Publishers Inc., 2006.

[Tuyt99] Tinne Tuytelaars, Luc Van Gool. ”Content-based Image Retrieval based on Local Affinely
Invariant Regions”. In Proc. Third Int’l Conf. on Visual Information Systems, pages 493-500, 1999.

[Tuyt00] Tinne Tuytelaars, Luc Van Gool. ”Wide Baseline Stereo Matching based on Local, Affinely In-
variant Regions”. In M. Mirmehdi and B. Thomas, editors, Proc. British Machine Vision Conference
BMVC2000, pages 412-422, London UK, 2000.

[Watt92] Alan Watt, Mark Watt. Advanced Animation and Rendering Techniques Theory and Practice.
Addison-Wesley 1992.

102

